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PREFACE

Stanford Research Institute has been conducting a study of position
location and navigation for the U.S, Marine Corps under Contract Nonr 2332(00).
An important part of this study is the assessment of present and future
syséems. In developing criteria for such assessment, censiderable diffi-
culty was experienced in locating suitable references for the necessary '
mathematical analyses, Further, descriptions of systems accuracy found
in the literature were found to be often confusing, sometimes ambiguous,
and occasionally in error. Thus an extensive effort became necessary to
collect suitable information, to develop additional methods of analysis,

and to select o uniform method of specifying system accuracy.

This Research Memorandum has been prepared to record these mathematical
techniques us they have been developed and used for the assessment of var-
ious position lecation and nuvvigation systems. A concomitant result has
been the specification of useful methods of describing the accuracy of -
position measurements. This memorandum lollows a format of presenting
the results with illustrative examples. These are followed by extended
discussion and derivation of formulas in the several appendixes. The
final report of the position location and navigation study is classified,
Since the mathematical techniques developed for this study can be applied
to other types of problems, they have been presented in a separate unclas-
sified volume to permit wider dissemination of these techniques to those

who may find them useful.

Additional volumes dealing with this subject may be issued under this

and other studies as the need arises,

Typographical errors existing in the first printing of this menorandum
have been corrected in this printing. No other textual changes have been

made in this second printing,

-
-
-
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LIST OF SYMBOLS

LOP lLine of position

At 4 point determined by the intersection of two lines of position

G, Standard deviation associnted with LOP
perpendicular to the LOP

o, Standard deviation associated with LOP
perpendicular to the LOP

#1, measured

#2, measured

¢ Angle between the two lines of position, also (and
equivalently) angle between LOP 1 and LOP 2 as shown

below,

o* Fictitious standard deviation

¢* Fictitious intersection angle

Lo
TA-267 -125

The combination of o*, o*, and a* represents an
equivalent description of a probability distribu-

tion actually described by o,, o,, and

After transformation of a probability distribution described by T1y Tgs

and o to an equivalent distrivution defined in

ellipse

o, standard deviation along major axis

o, standard deviation along minor axis

o,

terms of the axes of an
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When distributions about several points are combined to obLain un overall
distribution, double subscripts are used to designate the separate ellipses

which describe the distributions ubout each point,

i 9., Stundard deviation LOP #l.—ellipse fl
E Uy Standard deviation LOP ff2-—ellipse #
% Ty, Stundard deviation LOP #l—ellipse 42, cte,

After transformation to standard deviations along the axes of the indivi-

dual ellipses.

: o Standard deviation along wmujor axis—ellipse fl

. % Stundard -deviation along minor axis—ellipse #1 '
. O, 9 Standard deviation ulong major axis—ellipse #2, etc, i
' o, Angle between x-axis of ellipse #1 and arhitrary !

coordinate axes for combination of ellipses

o O, Stundard deviations ulong the arbitrarily selected
O, 90 T,y 8Xes, de§ignated w and 2, for multiple ellipse
ete, combination,

Py Py, Cross product function involved with transformation
etc. to w and z axes,

In general discussion of severul ellipses the subscript i is used to : ]

designate the general function. f = 1,2,3,..00000vinnn :

In the final combined ellipse, the subscript f is used.

Cus As above for the final ellipse _
LT‘/ .
Py i 1
s Standard deviation along major axis
o, Standard deviation along minor axis
f Angle between x-axis and arbitrary coordinate axes. :

o
e
[ Y8

R R

T Ty
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1. BASIC STATEMENT OF POSITION LOCATION PROBLEM

The basic problem in position location is the determination of the
coordinates of u remote point with respect to a known or arbitrary refer-
ence.  The remote point may be a landing zone for troops, or a target upon
which it is desired to deliver ordnance. Many other examples will immedi -
ately come to mind. The problem giving rise to the necessity for complex
mathematical aunalysis is the fact that no measurement can be made without
error. Thus, the results of a position determination in fact must be
described in terms of the probability of being within a given distance of
the desired point. Actually, this last statement is in too simple terms:
because more than one error is usually involved in the sum total of meas-
ments, it becomes necessary to consider the shape of the probability dis-
ttibution about the desired point. 1In general, these probability

distributions are ellipses rather than circles.

A relatively simple problem in position locatien is given in Fig. 1.
Here is assumed a reference baseline established by the measurement system.
The location of an artillery battery is then measurcd by the system, giving
rise to an ellipse within which a given probability may be stated that the
artillery battery is actuually located. Then, with respect to the same base-
line, a forward observer is located, giving rise to a second ellipse within
which he may be located Lo a stated percentage probability. From his loca-
tion he makes measurements oh a target which then may be locauted within a
still different ellipse. From this information the dotted line giving
fivring orders in range und azimuth is calculated. The weapon effects
ellipse is shown dotted and superimposed upon the target location ellipse.
Then, the problem of immediate interest is to calculate the probabilityof
damage to the target. Techniques heve bren established to perform such
calculation when each of the error figures about the various points in the
problem is a circle. However, the use of such cirvles can be quite mis-
leading when the actual figures are ellipses. 1In particular, the weupons
effect pattern is commonly a very elongated ellipse, differing greatly

from a circle. It is also characteristic of many electronic measuring

e oy
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techniques that the results, to be meaningful, must be expressed in terms
of ellipses. Thus it becomes necessary to develop a procedure of analysis

which permits the consideration of ellipses.

Acirele is readily defined in terms of its center and a single
distance, the radius. An ellipse requires additionul information—the
center, and two distances to correspond to the radius of a circle~—the
semi-major uxis and the semi-minor axis. Further, when we are concerned
with more than one cllipse. #e umust also be concerned with their relative
orientations. Thus, any analytical procedure concerned with the end result
of the consideration of a number oi error ellipses considers the elements
of each ellipse and the angles of these eléments with respect to a common

reference.

Because the detailed considerution of analytical technijues concerned
with any single ellipse is itself quite complex, the discussion will detail
first the considerations of a single ellipse of error. Following this
presentation, the method of combining several ellipses to obtain the end

result will be described.




2

2. ANALYSIS OF A SINGLE ERROR ELLIPSE

Most of the position location systems considered in this program
determine the location of o point at the intersection of two lines of
position. However, both lines of pesition may be in error. Figure 2
shows such un intersection of two lines of-position. The lines of po-
sition in this illustration are range meusurements from two points at
the extremities of a baseline of known length, The measurements of
fanges are reported as some numerical value. However, because of. inac-
curacies in measurement, the actual range may not be the indicated value,
but may lie somewhere between the limits shown as additional arcs either
side of the measured line. Thus, one becomes interested in the proba-
bility that the uctual point lies within some close distance of the
indicated point.

The intersection of the two lines of position together with the
standard deviations associated with cach are shown to expanded scale in
Fig. 3. (Standard deviation 1s a measure of error and is defined in
Appendix A.) Standard deviation as a measure of error is commonly desig-
nated by the Greek letter sigma (o) and the Greek letter alpha () will
be used throughout the analysis to designate the angle of intersection of
two lines of position. It can be shown that the contours of equal prob-
ability denstty about such an intersection are ellipses centered about
the intersection of the two lines of position. Thus, the ellipse shown
in Fig. 3 might be the 75% probability ellipse, meaning that there is a
75% probability—three chances in four——that the actual position of the

point whose location is desired lies within the ellipse drawn,

The detuited statistical analysis of the diagram shown in this figure
is quite complex. Salient features of the analysis will be stated in the
main portion of this memorandum. Rigorous mathematical analyses will be
found in the appendixes. This main hody of the memorandum will indicate
the assumptions made in the analysis of the accuracy of pesition location
systems and will present formulas, graphs, and nomograms to obtain numer-

ical results. Typical examples will be illustrated.

Preceding page blank
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lu the anulysis Lo follow of the accuracy of position locatiun systems

the following assumptions have been made:

(1) All bias ervors have been removed, leuving only the random
errors to be anulyzed. In mathemuticul terms, the mean or
averuge cerror is asssumed to be zero.

(2) These random crrors are sssumed to be normally distributed.
The mathematicnl implications of this assumption are dis-
cussed in following paragraphs. This assumption is required
to permit a mathematical statement of overall accuracy
relutionships to be developed.

(3) The errors associasted with the two lines of position are
assumed to be independent. This assumption implies that
a chanrge in the error of one line of position has no effect
upon the other. This assumption permits the analysis to
consider unequal errors aussociated with the two lines of
position, thus assuring a realistic muthematical model.

{(4) The lines of position are assumed to be straight lines over
the swuall ares of interest in the neighborhood of the point,the
position of which is desired. (See Fig. 3.) This assump-
tion is valid so long as the stundard deviation is smull
with respect to the wctusl rudius of curvature of the line
of position. In the unulysis of systems this is usually
found to be the case. Not to muke this assumption would
unrcasonably complicate the mathemuticul unalysis.

(5) The unalysis of errors of pusition is conlfined to two di-
mensions., The third dimension, ultitudt, may be considered
separately, if desired, if the system being analyzed is
capable of altitude measurements.

As shown in Fig. 3, the general case of the intersection of two lines
of position at any angle and with different values of error associated
with each line of position results in an elliptical error figure. Simpli-

ficed to geometrical terms, the ellipse looks like that of Fig. 4.

From this illustration, one may readily surmise that the exact shape
of the error figure varies with the magnitudes of the two input errors,
o) and 0,, as well as with the intersection angle, @. The angle a is also
the angle between the two values of sigma because the standard deviations
are mutually perpendicular to their corresponding lines of position. How
these variations may be calculated was the objective of considerable wvna-
lytical effort by the project team after a literature survey indicated the

inadequacy of uvailable techniques.

-
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FIG. 4 BASIC ERROR ELLIPSE

Results of this analytical effort have given two separate but inter-
related methods of ovbtuining the desired results. Each will be described

as simply ans possible and the necessary formulas given with examples.

Detuiled deviantions of the formulas obtained may be found in the appendixes.

Using either of the two methods of analysis developed, the end result
is the determination of the probability that the point is located within a
circle of stated radius. The basis of this concept may best be seen by
considering for u moment the special case when the two errors are equal
and the angle of intersection of the lines of position is a right angle.
In this case, and in this cuse ulone, the error figure becomes a circle
and is described by the circular normal distribution. A plot of this
special function is given in Fig. 5. The plot is to be interpreted as
follows: the horizonta! axis is measured in terms of R/o, R being the
radius of a circle within which it is desired to be located, and o being
the error measure, The error measure is given simpiy as o, for in this
circular case oy = o,. To illustrate, s measurement system gives a cir-
cular error figure and has u value of o = 10 meters; the probability of
actually being located within 8 circle of 10 metars radius wheu R/o = 1.0
may be read from the verticaul axis to be 39.3%. To obtain the CEP, the
radius of a circle within which a 50% probability results, the corre-
sponting value of A/0 is seen to be 1.18 from the graph. Thus, for this
example, the CEP would be 11,8 m. The concept of the function R/o will

be found useful in more complex cases,

9
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2.1 METHOD |

Starting with the inputs of Fig. 4, it is assumed that it is possible
to find fictitious values of sigma so that the two differing values origi-
nally given may be replaced by two new sigmas of identical value, indi-
cated as ¢®. At the same time u new and fictitious angle of intersection

a* is also required. Figure 6 indicates these new values.

./—-

TA-2167~N118

FIG. 6 TRANSFORMED PARAMETERS OF ERROR ELLIPSE

Also required for use with this first method is a whole set of prob-
ability curves, similar to that of Fig. 5, but with a separate curve for
each value of intersection angle. Such curves have been calculated with
the aid of a digital computer and are shown on Fig. 7. These curves can
be used only when the two error measures are equal, hence the need for

making the transformation of the previous paragraph.

The values of the functions ¢* and 3* needed to utilize the curves
of Fig. 7 may either be computed from the formulas given below or may be
determined from Figs. 8 and 9.

2

po———
sin 2ﬁvo§ t oy

vZ

a* = arcsin (sin 28 sin o)

11
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where

# = erctan (o,/o,)
thus

20.02
gin 2 8 = .

2 2
r:rl + cr..,

The derivation of these formulas may be found in Appendix D. It is ob-

vious that considerable computation is required to use the formulas

~directly, hence the curve of Fig. 8 and the nomogrem of Fig. 9 will be

found to facilitate the use of the formulas.

First one must calculate the ratio o,/o,. o, is always taken as
the larger of the two in this fraction, such that the value is always
less than 1.0, With this ratio, enter the curve of Fig. 8 and obtain the
o* factor. Multiply o. hy this factor to obtain the fictitious function
o*., The nomogram of * =. 9 is used with the same ratio to obtain the

fictitious angle a*,
A numerical example will illustrate the method of celculation.
Assumu u position location system has provided the following data:
a = 50°
oy = 20 meters

o, = 15 meters

What is the probability of the location of the point within a circle
of 30 meters radius?

Calculute the ratio o,/0; = 15/20 = 0.75.

Enter the curve of Fig. 8 with this value and obtain the o*
factor = 0.845. Multiply this value by o, = 20 to obtain o* = 16.9 meters,
Calculate the ratio R/c* = 30/16.9 = 1.78.

Enter the nomogram of Fig. 9 with the same ratio o,/c, = 0.75 and with
the given angle @ = 50° to obtain the fictitious angle a* = 47°.

The values R/o* = 1,78 and «* = 47° may be entered on the curves of
Fig. 7 to obtain P » 0.62 or 62%, interpolating visually between the 40°
and 50° curves for a* = 47°.

12
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Checking the values obtained from the nomograms by substituting the

figures into the exact formulas we obtain:

2 x 15 x 20 600

in 28 = e—— = e = 0,96
sin 26 225 + 400 625
ain 50° = 0.766
a* = arcsin (0,96 % 0.766)
= arcsin 0,735
= 47.3° (compared with 47° from
the graphical solution)
0.96625
o "= = ) et var——
VT

= 0.707 X 0.96 X 25
= 16.96

Rjo* = 30/16.96 = 1.77 (compared with 1.8
from the graphical
solution)

The values obtained from the figures are seen to be sufficiently

accurate for comparative evaluation.

Because the curves of Fig. 7 tend to crowd quite closely together
for some values when the angles approach 90 degrees, Table I presents

the same duta in numerical form.

2.2 METHOD 2

A second method of working with the error ellipses starts with a
different transformation. In this method new values of sigma are found
along the major and minor axes of the ellipse according to the formulas

given below. The geometrical considerations are given in Fig. 10.

17
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FIG. 10 TRANSFORMATION TO STANDARD DEVIATIONS ALONG ELLIPSE AXES
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The complex derivation of these formulas is given in its
Appendix B. Note that these formulas are given terms of

squares of the standard deviations.

After the values of sigma along the orthogonal axes

have been obtained, the re.ults of compurtations obtained

may be utilized to obtain desired circles of probability.

Harter's data it is first necessary to compute the ratio

o, is the larger of the two new standard deviations just

entirety in

variances——

of the ellipse

by Harter (Ref. 4)
To utilize

ro= 07/0, where

computed. Harter

presents tables (Tables II and TII) which then relace ellipses of varying

values of ellipticity to the radii of circles of equivalent probability.

The use of this second method will be shown by using the same example

given as an illustravion for the first method,
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Tuble [1
GIBCULAR ERROR PROBABILITIES P(K,¢)

| 1 i
“~ ¢
i N 60 | er ! 0.2 0.3 0.4 0.5 0.8 0.7 u.8 0.9 1.0
K ~ :
0.1 | 0700857 | 0443087 | 0242110 | 0164170 | 0223875 | .0009377 | .0UB2940 | 0071157 | 0062200 | 0066400 | 0049875
0.2 1685194 | 1339783 | .0BBA5J | 0028306 | 0482413 1 .0300103 | 0327123 | 0281416 | 0240824 | 0210767 & 0108013
0.4 | .2388228 ) 2213804 | 1799400 | .131B2BL | 1039103 | 0861635 | 0710102 | 0621380 | 0346808 | 0487030 | 0440026
0.4 3108435 | .301022B | 2035181 | .2130084 | ,1742045 | .1451808 | 1237082 | .1076237 | .0050498 | .0850326 | 0768837
) , 820240 | 3756884 | 3481700 | 3008001 | 2532063 | .215288 | (1857448 | .1020820 : 1443041 | .1200280 | .1175031
0.6 4514038 | 4457708 | 4255005 | 3846374 | 3367384 | 2014682 | 25648177 | (2261114 | 2000707 | .1811783 | 1647298
0.7 5 5100727 | 6115048 | 4000683 | 40332568 | 4170802 | .3000305 | 3280302 | 2026064 | 20290473 | (23B1683 | 2172065
0.8 | (6702802 | 8726067 | .5604457 | .B34VI87 | 4041882 | 4474207 | 4026028 | 3027122 | 1283463 ! 2080700 | 2738510
, 0.0 | 6318797 | 6288721 | 6191534 | (AU03140 | .5BS1S64 | 5213008 | 4750375 | 4333628 | 9053270 i 3620138 ( 3330232
: 1.0 | .08Y0805 | (0802325 | 6724886 | 6568042 | .6201240 | 5000053 | 5461310 | 8028790 | .4621421 | 4267583 | .3934693
1.1 | 7280070 | 7200607 | 7202682 | 7070081 | .0BA036T | (0524480 | 6110416 | .5687407 | 5272402 | 4887873 | 4530250
1.2 | 7008607 | 7082215 | 7030305 | 7532175 | 7350668 | (7079073 | .6714200 | 6306108 | 0803404 | .548B730 | .§132477
130 . .8003000 | .BO5OG4S | ,BUUBBS4 | 7020068 | 7704880 | 7587208 | (7240873 | (0873122 1 0474304 | 6070822 | 5704420
1.4 | .8384807 | .B374049 | 8340018 | .8277048 | 8160851 | (7089288 | .7720880 | .7IB308Y . .7007800 | .6623035 | .8:240889 -
1.6 | .8063856 | .8085127 | .8027728 | (8577802 | .8493071 | .8380810 | .B120287 | .7833002 | .7489600 | 7122646 | 6753475
i 1.6 ) .B904014 | (8897008 | .8875060 | 8834014 | 8708044 | 8657880 | 8478403 | .B226246.| 7017104 | 7574708 | .7210627
1.7 | .018601 | .0103102 | 0085619 | .00B3708 | .000174 | .B018836 | 8773110 | BEC2471 | 8201137 | .70'7882 1 (7462539
1.8 | (0281304 | ‘9276904 : (0208128 | .0237089 | 0187278 | .C180680 | (9019110 | .BB46824 | .8613238 | .8332178 | .802101:
L 18| 0428660 | (0422182 | 0411200 [ .930168b | 0350855 | .N303018 | 9222277 ' .U0B3E0H | .BBBB7IL | .8630140 | .B3BE2ES
2.0. . 0544007 | 0642272 ‘D243770 | (0618418 | (0400816 | 9404840 | (0388415 027870 | (9116702 | 800140 /8640047
2.1 | .9842712 | 0040508 | .R034011 | 0622127 | 9603170 | (9573205 | 0522000 | 0437608 | 0305013 | .0122714 | 8807405
22 | 9721031 | 9720804 | 9716237 | 0706100 | 0601697 | 0668845 | (0041017 | .0BEBB22 | 0480386 | .0308821 [ .9110784
2.3 | .07865618 | 0784275 | .07B040B | .D773450 | 9762410 | .0745230 | 0716084 | 0667300 | 9883739 | 9458085 | .U28Y046
2.4 | ,0836049 1 035108 | .0832180 | 9820018 | .UB18804 | 0805703 | 0784001 | 0747495 | 0882008 | .0580B0¢ | .04BR6E2
-2.6 | 0875807 ; .0875100 | .0872000 | 0868053 | .0862720 | 9883112 | 0837600 | 0810035 | 0700522 | .0670136 | 0860631
2.6 ' .00007¥6 | .0000240 | 0004612 | .0001674 | 0897045 | 0889934 | 0878527 | 0858331 | 0821023 | .D7BGUG0 | .0GENBLS
2.7 ' .0030061 | 9930271 | 9020042 | 0920804 | 002483 | 0918260 | .0D0PD44 | .0B0A268 & .08u7B30 | 0817837 | .D788786
2.8 | .0D4BBO7 . 0048012 | .9047727 | 0046141 | 0043040 | 0039842 | 0933821 | .0923240 | .QYOZRRS | .DRU4878 | .9BN16BD
2.0 | 0062684 | 002477 | .0BG1834 | .006U6BS | .A053BTE | 056126 | .0UBL7O8-| 0944218 | .00204/3 | 9000803 | 0850702
3.0 | .9073002 | .9072853 | 9972301 | 9071864 | .B9V000 | .J96B204 | .60S5205 | 0050854 | .U949774 | 9927025 | 0888010
3.1 @ .9980048 | .u080B42 | .0uB0212 | 0070022 | .0078009 | 0977200 | 0975109 | 9071348 | 9003851 | .0048168 | 0018113
3.2 | .0086267 | .9080182 | 998894y l .DUBBAY3 | .UNB4BH0 ' .00BABO2 | .008238€  .0U70733 | 0074478 | 0963105 | .9040240
3.3 | .0080382 ; .DU90279 ' 9090116 | .0080824 , 0030468 | 0088477 | 0087607 | .0U85702 | .0U82147 | 074004 | .U066822
3.4 .9093261 | 903226 i 0093112 | 0002000 | .9092603 | .BOU21t6 | 0001376 | 9080120 | 9087626 | 9981808 | .QDLOL13
8.5 | 0006347 | 0005323 | .D0V5245 | .UODGI00 | 0094888 | .6O94B5D | .0UDAOBI | .DUE3204| 0091502 | 0087480 | 907812
3.0 . .0096318 | 0096801 | .90UB7:8 | .00DGGSH | .000UK05 000281 ‘ .0905038 | 0005304 | 0004218 | 0001442 | 0084862
3.7 | .0007844 | 0097832 | .NO7707 | 0097733 | .0097033 | .9997482 | (9007251 | .00BOSG7 | 9096102 | .9DR4208 | .008VIE2
3.8 | .0098563 | .Y09B545 : .00UBG22 . .UHOB478 | .699B412 ' 0998311 ' .0008157 . .0UO7002 | .0907306 | .0506110 | .0992082
3.0 | .0000038 ;| .9090033 ° .0BY00I8 | .90UB0RY | 009845 | .000887E | .0UOS776 | 0098608 | .0008276 | 9007420 | 9995020
4.0 | .9990367 | .9090303 ; .0090383 | 0000334 .9999305| .9090261 l -0800196 | .9000085 | .DBOBE70 | .DOBI00 | .0V06045
4.1 ' .0000587 | 9000585 | 000058 | 9000508 | .0999547 0000610 | 0990475 | .9900404 | 9999206 | (9008000 | .9097763
4.2 1 .0090733 | 0099732 | 9009727 © .0000720 | 0099707 : .0Q00GBD - .90A0661 | .0000010 | 0890527 | 9099292 | 9908523
4.3 | 0900820 | .0000828 | .9000820 | 0000821 | .00NDBIZ ; .O0YSOL : .00U7RI | .NODNTB4 | .UDUDEYN | 0000548 | 9009034
4.4 -000U802 | 0909801 | .0000889  .00008B6 | .0U90881 | .QUY0874 | 0000863 | 0000845 | 0090800 | .9949715 | .OUYITE
4.5 | .co00032 | .909932 | .9090B31 | 9909929 | 9090925 | .0000021 | 0090914 | .0090092 | .0UDONBI | .UDOVE22 | .DODVEOY
4.0 i 0900058 | 0000057 | .0008057 | 0990085 | .00UBO54 | 0090051 | .900US47  .900D930 | 0000026 | .NOOVRSN | 0900740
4.7 0090074 | 0000074 | 0UOO073 | .BOOG97I | .00V0U71 | (9090670 | 0000067 | .0000003 | 0000055 | 9009032 | .0009840
4.8 | .0999084 | 9999884 | 009084 | .0D0OUS3 | .0000083 | .0DOUVS2 | .900VOS0 , .090HO77 | 0000072 | .0000DSE | .99N9HO1
4.0 | 9909990 | .0999990 | .00DOBY0 | .DROUODO | .9900UVC | .0DOHOBO | .0D0UG3S | .080LURG | .9D9HDAY | .DDUGOTH | 9000030
5.0 | .0000004 | .0UB0004 | 000004 | .000DCD4 | .9UOVUDA | .9D9BG03 | .0000003 | .U009002 | 0900000 | .DODVUSE | .0DLONE3
5.1 | .B900087 | 0000097 | (0060097 | .0009Y90 | .0U0NIDG | .9DO0DOG | .0000086 | .GOUNOOS | .BYODUO4 | 0908801 | .UOGOUTE
5.2 | .A000DO8 | (0000098 | .000ODHS | .9D90UV8 | .9UADNNS | .0090098 | 0000088 | .0909807 | .U9NUOT | .09DUYDS | .D900BST
5.3 | .4h00BOY | 09999900 | 0909999 | .9909000 | .0DUDIVY | .0000000 | .00U9R0V | .0000D08 | .090DYOS | .UDU0DAT | 0000002
5.4 | .0080090 | .B9AVEDO | 0990000 | .0UDUGYY | .0090A00 | 0049000 | 0000000 | .09OUOD | .00ROGVS | .09DO0VS | .HVO0GAS
5.5 |1.0000000 |1.0000000 |1.0000000 |1.0000000 |1.00GO000 -1.000000U [1.0000000 | .9960L9Y | .90B9000 | .099UNY | .DOLOLST
8.6 1.0000000 |1.0000000 | 6990899 | 0990088
5.7 ! 1.0000000 | .9950009
5.8 | : 1.0000000
6.0 | i |

P(K. o) -tln bability that & polot falls ) lo whe ¢ the
¢ prol devlzdon 8 5&1 Hors “u.-n n‘a’..uv‘lr canter ls & origin and whose radius is X tioeee whe larger standard devistion, ¢ being the ratio of the exaller
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Tuble 111
VALUES OF & CORRESPONDING 'TO CUMULATIVE PROBABLLITY P

i \
0.0 0.1 0.2 0.3 0.4 0.6 0.6 0.7 0.8 1.0
’ ; P \‘
. 5000 0.67449 | 0.08199 | 0.70885 | 0.74083 | 0.80785 | 0.87042 | 0.03365 | 0.09621 | 1.08769 1.17741
7600 1.15038 | 1.16473 | 1.10825 | 1,10240 | 1.23100 | 1.28534 | 1.358143 | 1.42471 | 1.50231 1.68511
| ) 9000 1.64485 | 1.04791 | 1.05731 | 1.673B3 | 1.00018 | 1.73708 | 1.70152 | 1.86254 | 1.94761 2.14507
9500 1.05000 | 1.96253 | 1.,07041 | 1,98420 | 2.005614 | 2.035806 | 2.08130 | 2.14508 | 2,23029 2.44775
L9750 2.24140 | 2.24305 ' 2.25053 | 2.20265 ' 2.28073 | 2.30707 | 2.34681 | 2.40356 | 2.48404 2.71820
L0000 2.57583 | 2.57778 | 2.58377 | 2.50421 | 2,60006 | 2.63267 | 2.06833 | 2.71515 | 2.78069 3.03485
-4
; . 0080 2.80703 | 3.80883 | 2.81432 | 2.83280 | 2,83830 | 2.85804 | 2.88850 | 2.93347 | 3.00431 3.38838
9078 3.02334 | 2.02500 | 3.03010 | 3.03808 | 3.05234 | 3.07144 | 3.00871 | 3.13960 | 3.20880 3.40164
: 8990 3.20083 | 3.99208 | 3.20073 | 3.30480 | 4,31718 | 3,33404 | 3.48040 | 3.30047 | 3.45608 3.71603
i
- Given:
o, = 15 meters
| ¢, = 20 meters
] - 2
: a = 50
For the computation the following numbers are needed

2 *0.5868

1.1736

0.852[625 + 423]

Substituting in the

sin

0.852 x 1048

893

‘a

formula for 03

= 225
= 400
= 0.5868

0.85207[625 4+ vIT9,37

]

21

l625 + v390,635 = 211,245

[225 + 400 + V6257 = 4 x 0.5868 x 225 X 400)




o = V893 = 29.9 mecters

uf 0.852[625 - 423)

i

0.852 = 202
= 172

. 2 : .
nute thut the numbers ure the same us for the o calculation except for
the minus sign,

o = viT3 = 13.1 meters
¢ = o, /o, = 13.1/20.9 = 0.438

As in the example under Method 1, it is desired to determine the proba-

bility of locution of this point within a circle of 30 meters radius,

Hlarter's datu is prescnted in terms of the ratio ¢, a function K, and
probubility, The function K, multiplied by the larger of the two standard
deviations obtained by this trunsformation method, gives the value of the
radius of the circle of the corresponding value of probability shown in the
table., In the example herve, the value of the rudius of the circle for
which a probubility is desired is given as 30 meters. Thus we may solve

for the proper value ol K by the equation:

Radius of circle = K-
30 = K29.9
K = 1.003

Then on graph of Fig. 11 (or in Table I1) for K = 1.0 and ¢ = 0.44
{(interpolating) read P = 0.62 as was obtained from Method 1,

An alternative presentation of Harter’s data is given in Fig. 12
and Table III where the parameters are selecied so as to provide rcady
information about the sizes of circles of specific probability value
associated with ellipses of varying eccentricities. These are convenient
as one often is specifically concerned with the CEP, the 50% probhability

circle or the 90% circle.

$————
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2.3 GEOMETRICAL ERROR CONSIDERATIONS

From the information that can be derived by using these two methods
of transformation of elliptical error data, one may develop curves which
show for constant values of initial error that the size of a circle of
fixed value of probability varies as a function of the angle of inter-

section of the lines of position,

To simplify the investigation of geometrical factors, it is initially
desiruble to consider the special case of o = 0, = ¢. Under this special
condition, the long formulas for o, and o, may be drastically simplified

to facilitate computation as shown below

V2
o, = T o (Ul = o,)
2 sin E a
V2
gy - ] c (0‘l = 02)
2 8 = Q
cos 2

Taking the ratio of these two values, a simple formula 1is found for the

ratio c.

Cr)'
¢ % — = tan - O
o

(Devailed derivations for these simplifications may be found in Appendix D.)

Utilizing these simplified formulas, significant parameters of error
cllipses have been tabulated in Table IV as a function of the intersection
angle @, Using the CEP curve of Fig. 12, values of the CEP have been cal-
culuted for each angle, showing that the CEP increascs as the angle of
intersection decreases. (The tabulation has been carried out only for
values of angles less than 90°—the numerical values are symmetrical about
this value of angle.) The last column in the table gives the factor by
which the CEP for angles less than 90° is greater than the CEP for a right
angle., This magnification of error curve is plotted in Fig. 13. A similar
computation has been performed for the 90% probability circle as it may
be scen that the curve for this value of probability has a slightly

26




- 5.0

ERROR FACTOR

Tuble 1V

STGNIFTCANT PARAMETERS OF
ENROR ELLIPSES WHEN

U‘l s CJ'2 = 1.0

o o | | [ e | e
90 1.0 1.0 1.0 1,177 1,177 1.00
g0 1.10 0,924 1 0,839 1.078 1. 186 1. 01
70 1,234 0,865 0, 700 0. 996 1.228 1.042
60 bod o817 0,577 0,914 1.292 1,099
50 1.672 [ 0,782 | 0,400 | 0,847 1.420 1.206
45 1.847 [ U.T06 | 0. 414 | 0.815 I.508 1,281
40 2,00 0,753 | 0.364 | 0,783 1.620 1,570
30 1 2.74 0,733 | 00268 | 0.734 2,01 1.710
20 4.06 0.718 0.176 0.700 2. 85 2.42
10 1 8.11 0.710 | 0.087 | 0.680 { 5.52 .64

Error Factor = CRP/1.177

3.0 r—

2.0 |-

CEP-50%

0 ) A S | ] ] | ] | | 1 L1 1 |
0 0 20 30 40 50 60 70 80 90 (00U 10 120 130 140 150 160 170
ANGLE OF INTERSECTION

TA=2167~:22

FIG. 13 CEP MAGNIFICATION vs. INTERSECTION ANGLE




Table V differing shape from the CEP curve-—see
90% CIRCLE ERROR FACTOR Fig. 12. Values are given in Table V, It

- 18 well known in any problem involving

position that the best results are obtained
0 (Lo 2,145 ) 2.145] 1.00 when the crossing angle is close to 907,
80 ]0.8391 1.98 2.18 1.015 ) . . .
70 {o.700 1,86 | 2.30 | 107 The curves of Fig. 13 indicate the magnitude
60 {0,577 1.775 | 2.51 | 1.17 of the growth of error as the angle varies
A0 Jo.den | 172 ] 2.88 | 13 [ gl g
45 ]0.414}11.702 1 3.15 1.47
40 10.364 | 1,687 | 3.47 L.618 It is also of interest to consider an
30 [0.268 [ 1.665 | 4.53 | .11 , , . ‘ L
20 |o.176 1 1.652 | 6.72 | 3.13 inverse problem—what values of probability
10 |0.087 | 1.645 [13.35 | 6.22 result if the radius of the circle is held

constant at the minimum value corresponding
Eeror Factor = 90% A/2.145 ’ o . .
to that obtaining for the intersection
angle = 90°? An answer to this question mauy be obtained from the -prob-

ability vs. intersection engle curves given under Method 1, Fig. 7.

Along the ordinate R/o = 1.177 which cdrr_espon_ds to the CEP for the
circular case, one may read the lesser values of probability corresponding

to the various intersection ungles. Likewise

. Cy Table VI
one may also obtain the probability values ) o
. . ) . PROHABILITY DECREASE WITH
.corresponding to holding a circle the size of . ANGLE FOR A CIRCLE OF
the 90% probability circle for the circular. CONSTANT RADIUS o * o,
cuse by using the ordinate R/o = 2.15 (also " ' P
equivalent to 1.83 times the CEP). These two 90 50 90
. . 80 49.4 89.2
curves are plotted in Fig. 14 and the numer- 70 4.5 86.9
. . ) , 60 44.0 82.4
ical values are given in Table VI. Itis to be 50 39.5 16
D . 40 37 66
noted that the probability values are not in- 30 25 53
20 17 31
versely related to the error factors plotted 10 8 19
in the preceding curves. The geometric error A= CER/9Q°
factor was shown to be a simple trigonometric & = 1,83CEP09Q°

. , N : 0
function; the probability curves are exponen- * 90% Probability at 90

tial functions,

28
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FIG. 14 DECREASE IN PROBABILITY FOR A CIRCLE OF CONSTANT

RADIUS vs. ANGLE
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3. ANALYSIS OF MULTIPLE ERROR ELLIPSES

The tools developed in the preceding section permit the specifica-
tion of individual error ellipses about a single point, As shown in
Fig. 1 a rcal problem in position-location involves the consideration of
the combination of errors from a number of sources., And us the preceding
section showed, in general ecach of these various sources of error will be .
expressed as an error ellipse. Iollowing the methods of the previous
section, each ellipse can be expressed in terms of the standard deviations
along its major and minor axes, The problem of the'combinution of multiple
error ellipses is the determination of the proper method combining a
number of individual errors to obtuin the totual error at some desired
point, 1In the general case, the ellipses will not be oriented relative
to one another in any way but a random manner, The exact consideration
of this random orientation of the anxes ol the ellipses complicates the
annlysis, but it is necessary Lo ubtain accurate answers, More>facile,
but upproximate methods, sometimes seen in the literature, will be dis-
cussed at the end of this section, Such approximate methods often result
in sizable errors——errors which almust always come ot in the wrong

direction so that the system sppuars to be better than it really is,

3,1 SPECIAL CASE—-—MUTUALLY PARALLEL AXES

Before attempting the analysis of the general cose, it is helpful
to look at the restricted and unlikely case where all the various ellipses
to be considered have their uxes mutually parallel, This special case

will then lead to the more general case,
Referring again to Fig. 1, there are four error ellipses of interest:
Weapon dispersion
Gun location
Forward observer location
Target location with respect to forward observer.
In a system with these errors we wish to obtain the probability of damage

to the target assuming that the shell must land within a circle of

20-meter radius in order to obtuin the desired damage level,
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For this initial exumple it is assumed that all the error ellipses
huve their axes mutually porallel—aligned north and east, for example—
and huve the paremeters listed in the example shown. Standard deviatioens
for the two axes of each ellipse are listed, The method of obtaining the
total error at the target is to obtain the sum of the variences in the
two directions and to convert these sums to the standard deviations of the
totul crror ellipse at the target. The desired probability may then be
obtained by Method 2 of the preceding section. The calculations are

shown in detoil.

GIVEN STANDARD DEVIATIONS VARIANCES

o e 4 o
x y x
Weapon dispersion Im 40 m 9 1600
Gun location 10 15 100 225
Forward observer 15 20 225 400
Sl Target. location 30 10 900 100
! . Suma of variances 1234 2325

Take square roots of variances to obtuin new standard deviations of total

error ellipse at target,

c, = Vi234 = 35.1m
o = V2325 - 48.2m

From Method 2, Section 2

¢ = 35.1/48.2 = 0.729
Radius of circle = Koy, .

20 = 48.2 K

K = 20/48.2 = 0.415

Then from the graph of Fig., 11 for K = 0.415 and ¢ = 0.73 (interpo-
lating) read P = 0,11.

In this case of the combination of several ellipses o, has turned
out to be larger than ¢_. In such ceses the factor K is always to be
multiplied by the larger of the two values of sigma, o or o, to obtain
the rudius of the probability civcle. The formulas given on Fig., 12 for

simplicity are stated in terms of o  always being the larger, The

7
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formulas assure this condition for uny single e¢llipse vaken alope without
reference to other ellipses, However, when ellipses ure combined, either

standard deviation may turn out to be the larger,

By way of comparison it is interesting to calculate how much of the
ervror is contributed by lecation measurement errors and how much is con-
tributed by the dispersion of the weapon. 1If we consider the weapon

dispersion ellipse alone

¢ = 3/40 = 0.075

Radius of circle - Kollrger
20 = 40 K
K = 0.5

Then on the graph of Fig, 11 for K= 0.5 and ¢ = 0.075 (interpolating)
read P = 0,37,

Thus with perfect location of all elements, this gun with the stated
dispersion (105 mm, wid-range) has u 37% preobability of landing a shell
within a circle of 20-meter radius, But, when the three location errors

are combined with the dispersion, the probability falls to 11%.

The numbers shown are realistic for a system of good accuracy and

better than most performance of today,

This method of adding variances along the two axes at right sngles,
down range and cross range, is the standard method of preparing an error
budget for a weapon system. The method, however, is not sufficient when
one wishes to combine ellipses having random orientations of their axes,
And since statistical distributions are involved, simple trigoncmetric

resolutions from one set of axes to another are insufficient.

3.2 GENERAL CASE--RANDOM ORIENTATION OF AXES

In the general case of random orientation of axes in any number of
error ellipses, a more complex procedure for combination is necessary
than that described in the previous subsection, Briefly, a reference
set of axes must be chosen and the orientation of each erroc ellipse
with respect to these axes must be determined, Then the variances along
these axes must be computed, a procedure which will also involve cross

product terms (See Appendix B), The special variances and the cross
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product functions muy then be udded to obtuin the corresponding functions
of the final ellipse. From these two variunces and the cross product
function of the final ellipse, which are associanted with the arbitrarily
chosen set of auxes, final values of o,  und v, along the major und minor
axes of the ellipse may be calculaved., Necessary formulas are given
below, Illustrative examples will clarify the description. The labor
involved is vonsiderable for any real example. For this reason, a com=-
puter program was developed tu permit such calculations to be run off in
larg. quantities as a part of the systems evaluation program. Derivations

of the formulas presented are to be found in Appendix D.

An example is illustrated in Fig. 15. The three smaller ellipses
are the given inputs to the problem and the large ellipse on the right
represents the combination of the three smaller ones. Each of the three
small ellipses is described in terms of its own o, and 0. Also shywﬁ are
the angles between the x-axis of each ellipse and the arbitrarily selected
reference axes which are designated the w and z axes, -To obtain the
parameters of the final ellipse, variances for each ellipse along the
w and z axes are calculated., Because the axes are not those of the

individual ellipses, an additional function o, the crass product function

o ~ "
6 Y b
v,
6\'
0} 92 0}
[
Tua Ty
ELLIPSE *, ELLIPSE ‘2 ELLIPSE *3 FINAL, ELLIPSE
DESIRED
¢‘|-I5m cr‘z-IOM cr,“IIOm oy,
c,,-lOm cyz-ZOm vy,-ZOn\ Ty
8,148° @z:60° G42130° 8,
TH-2187-124

FIG. 15 ELLIPSES WITH RANDOM ORIENTATION OF AXES
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is also required for each e¢llipse. These three functions, the two vari-
ances and the cross product funetion, from each ellipse are then added

to obtain the corresponding functions in the final ellipse. Functions

for the final ellipse are designated with the second subscript f. These
three functions in the finn ellipse may Lhen be converted to the T,y

and vy of thet ellipse along its major and minor axes, The calculations
are tabulated for this illustrative example on the next few pages, fol-
lowing the listing of the necessary formulas, The probler illustration
gives all intermediate values needed but dues not show every individual
calculation required,- The extensive amount of work necessary for such

a simple problem clearly shows the need for a mechanized computer-éolution.
The simple problem illustrated requires an hour or morc of hand labor with

tables and slide rule-—the computer handles it in three seconds.

The necessary formulas for this .calculution are given below without
derivations. Further discussion and derivations>will be.found in Appendix E,
The formulas are given in general notation using‘the letter i huvrepresent
the general ellipse., In the use of the formulas, i = 1,2,3,...n according
to the number of ellipses involved. The formulas are moat conveniently

expressed in terms of some auxiliary functions which are computed first,

Define . cos? g, sin?® 5,
A, = t
o 0’2.
xi yu
cos? Bi sin? 9.
B, = -t
ez ol
yi xi
1 1
Cl = sgin Qi cos 9i _— -
o2 ol
yu x1
Then
C.
py = ==
VAEB;
! = ]
wt
(1 = p2)4,
1
2 - —
g“_ B
(1 - p2)B,




-y

These last three formulas give the variances and the cross product function
fur each ellipse in terms of the w and z axes, These are then combined
according to the next three formulas to obtain the corresponding functions

for the final ellipse,

ol . & o2
vf (= wi
2 L 3 2
a i f h ii'l o—xi
1 n
Pr = 7 fa f i§1 (0,90

We now have the parameters of the final ellipse in terms of the w
and z axes, To eliminate the cross product function Py and obtain T,y
oy along the major and minor akes of thg final ellipse, we use the
formulas below. ‘ ' '

o? = % [Tsf + o 4+ ¢€;2

xf s f vf

2 )
2 - 2 2 - R
+ a‘f) 4U'IU.[(1 p.ﬂ]

ol

.2 2 . 2 2 2 . 2 2 - 52
o [J'f + Ul /(;vf + U’f) 4qung(1 pf)]

1t
0 |

The orientation of the final ellipse with respect to the w and :

axes 15 giver by the formula below.

2 o, 0 O
v¢ 3
tan Zﬁf = f f
2 L gl
o T %y
The numerical example follows,
GIVEN !
CONDITIONS ELLIPSE ¥l ELLIPSE #2 ELLIPSE #3
% i IS m 10m 10 m
v
Tyt 10 m 20 m 20m
o, 45° 60° 150°
CALCULATED
afi 225 100 100
"ft 100 400 400
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qo-26‘
sinle,

sin 0‘ cos at
con’ 6.
—

(1)

sin® Gi

0. 5000
0. 5000
0. 5000

0.0002222
0.005000
"~ 0.007222.

0.005000 .

0.002222

-~ 0.007222

5,216 x 10°°
0.007222

0,1000

0,004444
0.005556

0.002778
0.3849
0.1481
0.8519
162.6
162.6
12,75 m

12,75 m

0.2500
0, 7500
0.,4330

0.0002500
0.001878
0,004375
0.09062?0
'9f907500

0.008125

3,555 x 107°

0,005962

0.002500

0,01000
~0,007500

-0,003750
~0. 5451
0.2971
0.7029
325.2
175.1
18,03 m

13.23 m

0.7500

-0, 2500
+0,4330

0.007500

0,0006250

0,008125

0,001875

0.002500
0004375
3,555 1 107°
0,005962

"0,002500

0,01000
-0, 007500

0, 003750
0,5451
0,2971
0,7029
175.1
325.2
13.23m
18.03 m




“Substituting these values of o,

ST 162.6
325.2
175.1
662.9
o, = 25.74m
O S
f 25,74 X 25.74
662.9
62.58
662,
pt = 0.0089132
(1~ p?) = 0.9910968

2

[s62.9 + 662.9 + /(662.9 + 662.9)7 - 4 662, 9%(9,99109)]

ol, = 162.6
175.1
325,92
662.9

5 25.74 m

[0.3849 % 12.76 X 12.76 .
- 0.5451 % 18,03 x 13.23
+.0,541 % 13,23 * 18,03)

x 00,3849 % 162.6

= 0,09441

O, and Py into the formula for Tyt

[1325.8 + V4 % 662.9°% 0,008913]

[1325.8 + 125.

x 1451

725.5
v725.5 = 26.93 m

[

[ ]

(1325.8 = 125,

X 1200.6 =

2]

2]

600.3
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o, = v600,3 = 24.5m

2 % 0,09441 % 25.74 X 25.74
662.9 ~ 662.9

numerator
ety

0

arcton @ = 90°

2 6! = . 90°

- 0
6, 45
~ The computer solution of this same problem gives answers differing

only by one in the fourth place, thus confirming the results,

Because of the labor_invol?edrin the foregoing calculations, some
references have indipatéd that errors may be combined by converting each
error distribution to the CEP at that point according to Method 2 and
then combining the individual CEP values rootssum-square. This method
almost always has been foundftO'give'too small a value of the CEP at the
final”ellipée.- Conversion to individual circles eliminates the effect
of orientation of the ellipse which is an important consideration in
combination, To illustrate, the same three ellipses used in the pre-
viously lengthy example will be handled by this simplified method and
compared with the answer obtained by converting the final ellipse to a
CEP,

ELLIPSE #) ELLIPSE #2 ELLIPSE #3

% 15 10 10
o . 10 20 20
yl
c 0. 667 0,50 0.50
K 0,956 0,870 0,876
CEP 14.35 17.4 17.4
crp? 206 302 302
Sum of (CEP'g)? 206

302

302

810

CEP of final location = V810 = 26,45m
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Now compare this with CEP of final ellipse

O",
%yt
c
K
CEP

The error in this case is relatively smal
method gives an answer that is 8% too small.
indicate that errors of up to 20% can occur using this simplified method.

Approximate calculations of the CEP are disc

Appendix A,

=

26.93

24.5
24.5/26.93 =
1,144

1.144 x 26.93

40

as just computed

.948

30,8 m

] while the simplified
Other sample calculations

ussed in more detail in
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APPENDIX A

MEASURES OF ERROR

1. INTRODUCTTON

This appendix describes the various terms used as measures of error
in more detail thun the discussion in the body of this Memorandum. In
addition, other terms often noted in the pertinent litevature are defined

and related to the terms used in this report,

_ The reader is cautioned to read analyses of systems accuracy with
care, The literuturc,examiuéd by the SRI project team in the progress of
this study sometimes contuins numerical errors. More serious, however,
incomplete or misleading definitions of terms ure often found, and, occa-
sionally, incorrect definitions have been noted. In other references it
may be impossible to tell exuctly what was meunt by a particular measure
of erruor, The discussion of measures of crror in this appendix is ine

tended to help clear away such misunderstanding and confusion,

2., ONE DIMENSIONAL ERROR TERMS

Although the basic problem of position location is concerned with the
two dimensions necessary to describe an area, one dimensional error mea-
sures are commonly applied to each of the two'dimensions involved. 1In
fact, as shown in the discussion in the body of this memorandum, it is
most convenient to do this to permit a tvuly general approach to the con-
sideration of error ellipses. Thus the meusures of cerror concerned with
one dimensional of Gaussion distributions are important. The following
terms aure frequently met and each 1s described in following paragraphs:

standard deviation, RMS error, sigma, probable error, and variance.

2.1 StanNpanD DeEviarion, BMS Ernon, Siuama (@)

The three terms all mean the same. The basic equation of the normal
L)
distribution indicates the use of the Greek letter sigma from which the

shorthand use of sigmn for standurd deviation arises,
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Standard deviation of a measurement system is a property that may be de-
termined expurimentally, If u lurge number of measurements of the same
quantity-u leugth, for example—=are made and compured with e standard,
the staundard deviation is the square root of the svm of the squares of
the deviations from the meun or average value divided by the number of

measurements taken. Symbolically, Lhis operation is represented as

The term rms (root-mean-square) error comes from this latter method .of

computation, . R - .

-
'

Numerically, one sigma corresponds to 68% of .the diéﬁ{ibd;ioﬁ:

that

is, if a large number of measurements were made of a given quantity, 68%

of the errors would be no greater than the valua of one standard deyiation.

Likewise 20 correéponds to 95% of the totul errors, and 3o t6_99,6%'0f

the total errors.

2.2 Pnosasit Eunnor

This term is identical in concept to standard deviation when con-
sidered as the rms error determined after a series of measurements. The
term differs from standard deviation in that it refers to that value
corresponding to the median error; no more than half the errors in the
meansurement sumple are greater than the value of the probable crror.
Linear probable error is related to standard devintion by a multiplying
factor. One probuble error equals 0.6745 times one standard deviation.
Probable error is used in Army artillery manuals as a meusure of weapon
component errors, such as the range and deflection errors associated
with a particular weapon and ammunition. Industrial practice in the
United States also employs the probable error when a measurement is re-
reported in the manner of 173.23 & 0.05 fv. The 0.05 ft is to be
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interpreted as 8 probable error of the measurement. Probable error has
not been used in the annlyses of this study for it is not as convenient

an error meusure to handle mathematically as the standard deviation.

2.3 VARIANCE

This term is met most frequently in detailed mathematical discus-
sions. The term refers to the square of a standard deviation. It is
useful in simplifying the algebra of some complex mathematical deriva-
tions (see Appendix B for examples). It also is a convenient concept
when preparing an error budget made up of many separate components of
ervor for the individual variances may be added diréctfy to obtain the

total variance.

3. TWO-DIMENSIONAL ERROR TERMS

Terms similar or identical in words to those used for one-dimensional
error descriptions are also used with two-dimensional or bivariate error
describtions.' However, in the two-dimensional case, notall of these terms
have the same meaning as before and considerable care is needed to avoid
confusion. ‘

3,1 Stanoanup DEVIATION OR S1GMA

These two terms, used interchangeably, bhave a definable meaning only

in the specific case of the circular normal distribution where o = o,

In the case of the circular normal distribution, the standard deviation
o is equivalent to the standard deviation along both orthogonal axes,
Because we are here concerned with a radia) distribution, the total dis-
tribution of errors involves different numbers from those of the linear
case. In the circular case, ! o error indicates that 39.3% of the errors
would not exceed the value of the 1 o error; 86.4% would not exceed the
2o error, and 98.8% would not exceed the 3 o error.

Because the usual case where there are two-dimensional distributions

is that the standard deviations along the two axes are different, resulting
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in an elliptical distribution, the circular standard deviation is less
useful than the lincar stundurd deviotion. It is more common to describe
two-dimensional distributions by the two separate one-dimensional stun-
dard deviations aussociated with cach error axis., References often do not
make this distinction, however, referring to the position accuracy of
system as 600 fu (2 ), " for example. Such a description leanves the
reader wondering whether the messure is circular errvor, in which case

the numbers describe the B6% probability circle, or whether the numbers
are to be interpreted as one-dimensional sigmus along each oxis, in which
case the 95% probability civcle is indicated (assuming the distribution
to be circular, which actually it may not be). The analyses of this re-
port have, in general, used the two sepprate linear standard deﬁiations
as error measures, Where specific circular measures have been used, they

are so noted carefully to avoid confusion., (See next subsection.)

v The term BMS cerror when upplied to two-dimensional errors, does not
have the sume meauning as the standard deviation. The term is often used
inrthc literature, although it has an ambiguous meaning in relation to
terms of probability. For this reason its use hus been deprecated in

this study, The term 1s discussed sepurately in a following subsection.

3.2 CEP (Cinctrar Eunon PROBABLE »-ALSU SOMETIMES
CPE, CincuLAk PronasLe Enrnon)

In a circular normal distribution this term refers to the radius of
a cirele containing 50% of the sumple of the individusl measurements be-
ing made, or the radius of the circle inside of which there is a 50%
probability of being locuted. This is a common measure often used with

weapon systems and position location systems.

The term CEP is ulso used to indicate the radius of a circle inside
of which there is a 50% chance of being located, sven though the actual
error figure is an ellipse (Fig. A-1). The body of the Memorandum de-
scribes the method of obtaining such CEP equivalents when given ellipses
of varying eccentricities. Curves and tables are furnished to perform
this calculation. 1In the literature, despite the availability of these

curves and tables, approximations are often made for this calculation of

a CEP when the actual errar distribution is elliptical., Several of these

approximations are indicated and plotted for comparison with the exact
curve in Fig. A-2. Of the various approximations shown, the top curve,

the one which diverges the most rapidly, appears to be the most commonly
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TA=2167~126

FIG. A1 ERROR ELLIPSE AND CIRCLE OF EQUIVALENT PROBAélLITY

used in published systems annlyses. Use of the curves and tables given
in the body of this Memorandum is recommended to avoid such problems of

approximations.

Another fuctor of interest concerning the relationship of the CEP to
various ellipses is that the asrew of the CEP circle is always greater than
the basic ellipse. Calculations made using the values of the tables given
in the body of the Memorandum are
given in Table A-1 where it may readily

Table A-1]
" d‘ -
COMPARISON OF ARKAS OF 50% ELLIPSES be seen that the 1ver§ence between the
OF VARYING ECCENTRICITIES WITH AREAS gctual area of the ellipse of interest
OF CIHCLES OF EQUIVALENT PROBABILITY and the circle of equivalent probability
increases as the ellipse becomes thin-
C= a/b | . AREA OF AREA OF ,
S0% ELLIPSE | EQUIVALENT CIHCLE ner and more elongated. This fact
0.0 0 1.43 provides au powerful reason for the
0.1 0,437 1.46 _ , _
8% g)gm };)? method of analysis used in this study
s » O
0.4 1.75 2,06 of considering the ellipses directly,
0,5 2.08 2.37 especially when o number of ellipses
0.6 2,62 2.4 , . ,
0,7 3,06 3,12 are involved in the determination of
0.5 303 350 final probubility [i
. .9: 3. g final probabilit igure.
1,0 4,37 1037 nat p y 8

i s e e

¥
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The effect of conversion of ellipses Lo the pquivnluht CEP values
is well illustrated ip the comnbination of ellipses of different oricutu-
tions.  If two equal ellipses whose relative orientation iy 90° are com-
bined, the result is a circle. As mentioned in the last scetion of the
body of the Memorundum, combinution of ellipses iw sometimes calculuted
by converting cuch individually to its equivalent CEP, and then combine
ing the individual CEP values root-sum-squuare. The simple example shown
hhere indicates that a considerable degree of error can result from such
a combination of scparately obtuined CEP values when compared with the

CEP obtuined from the combined figure.

ELLIPSE 41 ELLIPSE #2

T ’f 1 o T, L0
o, 10 o0 1
¢ - 01 ¢ = 0.1
K =  0.63{ ‘ - .K = 0.681
cEP - Ko, CEP = Ko,

In cach case CEP = 6.81. [If the two values of CEP are.
combined root-sum-squure the result is 6,81 V2 = 9.65.
If we now combine variances to obtuin the combination,
the results are:

ot =) g, = 100
o, = 100 o, = 1
o, = 101 o, = 101
o, = 10.04 oy = 10,04

Thus, the final figure is a circle.

¢ = 1.0
K = 1.177
CEP = 1,177 x 10.04 = 11.9,
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This figure is the vorrect one and the auhswer obtuined
by combination of individual CEP values is

1 -(9,65/11.9)= 19% Luo low.

The value of the CEP may be reluted to the radius of other values of
probability civeles analytically for the cuse of the c¢ircular normal dis-
tribution by solving the busic equation for various values of probabilitvy.
For this special cuse of the circular normal distribution these relatinn-
ships are shown drawn to scale in Fig. A-3 with the ussociared values
tabulated in Table A-2,

60%
70 %

820 %
90 %
95 %

99 %

Ta~-2167-128

FIG. A-3 RELATIONSHIP BETWEEN CEP AND OTHER PROBABILITY CIRCLES
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1 : The derivation of these values is
ﬁ ! shown in the following analysis, First,
the factor relating the CEP to the
circular sigma i= derived, then, us a
second example, the relationship be-
tween the 75% probabilicy circle and
the circular sigma. The ratio be-
tween these two values is then the

1 \ value shown in Table A-2 for the 75%

PR) =

l- e 20_‘2. 3

e

i

[}

CEP = P(R) =

_ A%

_aZ
-2

1o

ln 0.5

in 0.5

ln 2

Tuble A=2

RELAPIONSHIP BETWEEN CEP AND RADIL
OF OTHER PROBABILITY CIRCLES

OF THE CIRCILAR NORMAIL DISTRIBUTION

MULTIPLY VALLE OF

TO ORTAIN RADIUS OF

Toke natural logarithm of both sides

P By CIRCLE OF PROMABILITY
1,150 60%
1.318 0%
1.4)4 75%
1.524 80%
1.655 85%
1.823 90%
2.079 a5%
2.578 99%
equation is

-8

1 - e 20?

0.5

0.5

0.5

(Iln 0.5 = = 1n 2)

cv2in 2 = < V1,386

1,177

log e

0.6931.
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For the 75% probabilivty circle

1 -¢ %% = 0,75

e 0 s 0,25

—~
1
(\
[}
)
[ =
P

S—”
"

In 0.25
R? .
— = ln 4
204
R = oVvV2 In 4
R = 1.665
1.665 .
R75 . 663u-,= 1.414

R50 111770‘»

The factors tabuluted in Tuble A-2 are sometimes used in the litera-
ture to relate varying probability circles when the basic distributionis

not circular, but elliptical. That such a procedure is inaccurate may be

seen by the curves of Fig. A-4. These curves were prepared from the val-

ues  of Table III in the body of the Memorandum. It may be seen that the
errors involved are small when small ellipticities are involved., But the
errors increase significantly when both high values of probability are

desired and when the ellipticity increases in the direction of long, nar-

row distributions.

3.3 CorngLAT1ION COEFFICLENY

In many statistical references the prescence of o cross-product term
is indicated as a correlation between the two variubles, such as 7, andzz.
As used in this statistical sense the verm correlaiion does not imply
that the variables 2z, and z, are connected in any physical way. The two
variables are independent and a change in one does not affect the other,
The factor ¢ (rho) which appears in equotions relating multiple ellipses
to an arbitrary set of axes is that factor often called the correlation

coefficient in statistical literature. Because correlation can be
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mwisintvrpreted as inplying o physical interreluvionship which does not
wctually exist, the use of the term has been uvoided in this study, de-
spite the consequent need for the circumlocution of “eross-product term
in oz,z,."

The term correlution is also used in some of the references to indi-
cate the case when there is an interrelationship bevween the two variables,
a condition that obtuins in some physical systems where wwo signuls may
be synchronized teo u third, Hewnce, one must be very careful when using the
term to insure a proper understanding of the mathematics. Because the
term correlation is thus subject to pussible confusion and conuradiction,
its use when referring to u cruss-product term hun been averded in this
study. When it occurs, it will refer solely’to an actuul physical inter-

relationship.

3.4 BRapiat or BMS Ennon, drh

The terms radial error, RMS e¢rror, and drmu

are identical in meaning
when applied to two-dimensionul errors, Figuru A-5 illustrates the defi«
nition of d_ .. Tt is scen Lo be the square root of the sumof the squures
of the one sigms errvor coumponents along the major und winor axes of a
probability ellipse. The [igure details the definition of 1 don,e Sin-
ilarly, other values of d_ _ may be derived by using the corresponding
vulues of sigma. The meusure d . is not equul Lo the squuare rone of
the suw nf the squares of the o and o, thut urc the busic errors con-
nected with the lines of position of u particular position locativn sva-
tem. The precedures described in the main poccion of this Memovandum

und derived in Appendix D must first be utiiized to cbtuin uvhe valuas
shown as o and o, in Fig. A«5. The three terms used as a measure of
error, BMS error, rudial error, und drm: arce somewhat confusing because
they do not correspond to a fixed value of probability for a given value
of the error measure. The terms can be convenicutly related to other
error measures only when o = o, and Lhe probability figure is a circle,
In the more common elliptical cases, the probability associnted with a
fixed value of drm. varies as u function of the eccentricity of the

ellipse, 1 d ., is defined as the radius of Lie circle obtained when

o= Lin Fig. A-5 and o, vuries from zero Lo one. Likewise, 2 drms
the radius of the circle obtained when o, 2 and vy varies [rom zcro
to two. Values of the length of the radius drnH may be calculated as

shown in Tuble A-3. krom theuse volues the ussociuted probabilities may
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FIG. A-5 ILLUSTRATION OF ROOT MEAN SQUARE ERROR

be determined from the tables of the
body of this annex., The variations
of probability ussociated with the
values 1 d o and 2 d_  are shown
in the curves of Figs, A-6 and A-T,
Fig. A«8 shows the luck of a constant
relationship in o slightly different
way. lHere the ratio drm./CEp is
plotted aguinst the sume measure of
ellipticity. The three figures show
graphically that there is not a coun-
stunt value of probability ussociated
with u single value of d__ . While
this variotion is not great, it is
felt to be unnecessarily confusing.

used in this study.

Table A-3

o CALCULATIONS

rms

LENGTI OF PROBABILITY

o o : =9

Y l rma drml 2 dl‘hll
0.0 11.0 1,000 0,583 0,054
0.1 1.0 1,005 0.682 0,955
0.2 1.0 1,020 0.682 0,957
vl 1.0 1,042 0.676 0,961
0.4 1.0 1,077 0.671 0,906
0.5 | 1.6 1,118 0,662 0,969
0.6 { 1.0 1,166 0.650 0,973
0.7 | 1,0 1,220 0,641 0,977
0.8 1.0 1,280 0,635 0,980
0.9 ] 1.0 1,345 0,632 0.981
1.0 | 1.0 1,414 0.632 0,982

Thus

rms
unglan Lu sach other.

-
d = \/cr; + aTwhnu v, and cr’ ure 4t right

the messure d - hus not been
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APPENDIX B

DERIVATION OF METHOD 2 FORMULAS

1. INTRODUCTION

In the body of this memorandum it was shown that the most general
case of analyzing the uccuracy of a positioning system resulted in the
consideration of basic input error vectors intersecting at any angle.
Graphs, ndmograma,‘and tables were shown that may be used to obtain
solutions to problems of accuracy determination where the lines of posi-
tion do not intersect at right angles. Two methods of solutions were
given there. This appendix presents a complete derivation of the for-
mulas to obtain the standard deviations along the major and minor axes

of an error ellipse, These functions are then used as the inputs to

- Harter's method of determination of elliptical probabilities described
at the end of the Method 2 discussion. ' ' '

The presentation of the Method 2 analysis is given ahead of that

for Method 1 (see Appendix D) because of the detuiled discussion developed

during this analysis, which is basic in philosophy to both methods, Also,

some of the formulas developed in this appendix are useful in derivations

of some of the intermediate Method 1 solutions,

Nonorthogonal bivariate distributions arise when the lines of posi-
tion do not intersect at right angles. Such a condition is the usual
condition whetever the type of navigational system used——hyperbolic,
trilateration, or conventional navigation with chronometer and sextant,
Given two lines of position each with its own standard deviation, the
problem is to determine the probability that the measured position is
within a certain distance of the true position. Also of interest is the
inverse problem, to determine the radius of a circle around the measured
position within which the navigator knows, with a given probability, his

true position lies,

An explicit solution for the integral which must be evaluated to
solve these two problems is not possible, but the integrals can be

61 Preceding page blank
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evaluuted by a digital computer, The mathematical litorature scems o
contuin neither tabulated values of the integruls for the nonorcvhogorul
ense nor analysis of nonorthogonul bivariste normal distributions,
Muterial on orthogonal bivuriste normal distributions is, however, com-
parutively ubundant (Refs, 1-8). In order to avoid the necessity for
performing many integrations by quadratures, a technique has been found
which permits existing tables ol the bivariate normal distribution to be
used to solve the problems listed above., This appendix will derive the
necessary cquations for obtaining o und o, The use of these functions
as part of Method 2 has nlready been described. The following appendix
indicates how these same functions may be used, after calculation pf some
wuxiliury functions, to obtain solutions from available tables other

thun those already illustrated in the body of the memorandum,

2 . STATEMENT OF THE PROBLEM

Consider a general point P whose position is determined by measuring
its distunces, r,.and ry respectively, from.two points of kﬁoyn location,
M and § (Fig, B-1). M and S might correspond to the master and slave
stutions of a trilateration system. ‘They might ulso correspond to two
points of known location to which the ranges r, and r, are measured by a
runging system such as a radar, u laser, or an optical rangefinder. ¥
und § might be points on the surface of the earvh directly beneath two
sturs that are being used to determine position by conventional navigation
techniques, using sextant and chronometer. The measurements of distance
are ussumed to be normally distributed with standard deviations o, and o,

In Fig, 1 concentric circles of ry, top, r, and ry = o, about M and

ro t oy, ry, and ry = o, about S have been drawn to suggest the normal dis-

tribution of the two measurements of range. If the sta..' ' Jeviations in

range are very small in comparison with their respective . .ges, the concen-

tric circles can be assumed to be straight lines as in Fig. B-2. In this

illustration, coordinate axes u, and u, are defined perpendicular to L, and

l, respectively, which represent the true lines of position correspondinr
to circles of radius r| and r, in Fig, B«l, Other lines of position huve
been added at distances o) and o, respectively from L, and I,. With no

loss in generality, the measured lines of position could be assumed to be
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produced by conventional nuvigationnl techniques using sextant and theodoliie,
by a trilateration system, or by a hyperbolic navigation system. Randonm
ervors in measurement may cause a measured line of poéibion to be displaced
perpendicular to itself, and the probability that a meusured line of posi-
tion I,  will fall with a zone of width du, at a distance u, from the true

line of position [,, is given by

p,dy, = e ! (1)

/7o,

Similurly, the probability that the othor measured line of position Ly
will fall within a zone of width du, at a distance U, from the true line

of position. l, is given by

2
g

T | |

p,du, = e 2 du - (2)

T Vo, t

Note that ul.und u, ure measurcd along the u, and u, axes, which 1n genecral
are not orthogonal except under special conditions, The probability that
the measured position will fall within an element of area dul. du, centered

on the point (u,, u2) 18 given by
Piadujduy, = pp,dudu, (3)

The probability that the meazured position falls within an area of any
size and shape, 4, is found by integrating the ubove equation over that

area.
P, = f{ p\pgdu, du, (4)

Therefore, in order to find the probability that the measured position
lies within a distance r from the true position, the above integral must

be evaluated over u circular ares with radius r:
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The inverse problem, to [lind the rodius of a circle centered on the trye
position within which o meusurcd position has a given probability of
falling, is solved by fixing P, in the above cquation and solving for
r. Next we shall show how existing tavles cun be used to evaluate the

above nonorthogonul bivariate probability integral,

3. LEVALUATION OF 'T"HE PROBABILITY INTEGRAL

In the above integral u, and u, are stochamstically independent
nonorthogonal voriabless The probability integral will be sol'ved by
first converting to a new orthogonal coordinate system with notmally

distributed variables, However, ‘these new orthogonal variables will

not lie along the major und minor axes of the ellipse, Hence ‘the equa-
tion of the ellipse, expressed in terms of the new coordinate axes of

zy and z, will contain a cross-product term in 2,24, Since such terms

“are inconvenient for ready algebraic manipulation, a .second coordinate

transformution, consisting of u simple rotution, will be employed to
remove this cross-product term, The final answers thus obtained will
be the standard deviations ulouyg the major and minor axes of the

ellipse,

Neither of the two coordinate transformations ulters the shape of
the bivariete probubility distribution. After the second transforma-
tion, the resulting probability integral can be evaluasted by existing

tables, such as cthose given in Refs, | through 4

The first coordinate conversion, illustrated in Figs, B.3, B-4,
and B«5, is from Wiy Uy coordinates to 2., 2, coordinates, The latter
two axes are orthogonal with z, coincident with uy. The former two
axes ara not orthogonal, and the y, and y, coordinates of the point

ure found by druwing two lines through the point pavallel to the uy
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FIG. B-3 FIRST C‘OORDINATVE CONVERSION

and u, axes, Thus u; and u, coordinates are then found by measuring the
distance firom where these lines intersect the u, and u, axes to the urigin

of the coordinate system. By elementary analytical geometry,

Y, = oz, w, =z, ' (6)
and

kz, * 2z,
Y
(1 +k2)
where k is a constant describing the slope of line of position [,.
B = tan ¢ (8)

where @ is the angle between the two lines of position,

[t is necessary when converting from one coordinate system to another
to replace the old element of area by a new ~lement of area multiplied by

the Jacobian of the old veriables with respect to the new variables.

Upelly
J ( - dz dz, (9)
2,1,

That is

it

duldu2
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FIG. B-5 FIRST AXIS TRANSFORMAT ION
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By delinition

; ul,dg Oy, u,) Ouy;. Ou, du; Ou, (10)
zl,zQ) © 9(z,,2z,) 9z, 8z, 03z, D9z, ‘

When the indicated partial derivatives are evaluated by purtial differentin-

tion of cquutions (6) and (7),

ul.ug k i
J = =y sin a (11)
STV (1 + k%) : .
Thérefore, '
: k .
du du, dz dz, , (12)

(1 + k2)%

By substituﬁ{ng equntions (6), (7), and (12) into equation (5)

s RV AW
(8
p - L J AT

A ,
29,7y |
A
2 2
1 , 1 1 2hzyay LI
- zl — + +
1 2 ot Slawmd| olawm?  Jiawd
T _% e dZ,de
2r(l + k%)

(13)

The change of variebles has not disturbed the location of any point, and

therefore the circular area over which the integration is to be carried

out is unchanged.

Examination of the exponent shows a cross-product term in z,;z,. Only
if k were infinite, corresponding to the special case in which the u, and
u, axes were perpendicular, would this term disappear. In order to remove
this term, the following transformation, which corresponds to a rotation
through an angle &, will be applied:

2, = xcos 0 ~ysind (14)

68




; 3, = xsin &+ ycosd (15)

i The Jucobian of this transformation is one, so dxdy can he substituted
! for dz,dz,. By substituting the above equations into the exponent of 3
'

in equation (13),

2,2

1 1 2k2122 k L2

z% —_— + + = x -———1———-——— (a'% +o'g +k2:7%)c0320
ol ol +k2)| o¥(l+ kY o1+ kD) ool (1 +k?)

: ' . o : = R 2ko*"l7 sind cos _fokzc.r_f sin? t‘;lj
1 2 20c in? -.
tayl . |2kot(cos® 0% sin °5)
ol (1 +k?
- (o-i-—k?of +-d§ + k"’o‘%)(? siné'cosﬁ;J
' "‘: ’ o B 1

+yt —_ [lef+ o} +k%]) sin® 0

ofog (1 + &%)
: ; v ' - 2k0% sinfcos 6 + 1320'21 cas? 6]

(16)

In order to climinate the cross-product tcrm in xy, the coefficient of

the xy term in the preceding equation must equal zero. This occurs when

ol = k) + o021 + k?)

cot 26 = (17)
2kcfi
0’?(1 — tan? o) + O‘%(l + tan? @)
= (17a)
2 tan go?
An alternative form 1is
af cos? o + Ug
cot 260 = {17b)
sin 2(10’%

Under this condition . and y become the semi-major and semi-minor axer of

the ellipse. (See Fig. B-6.)
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| | -sier-ay
FIG. B-6 SECOND AXIS TRANSFORMATION
In the special case when o and o, are equal,
tan 26 = k - (18)

The slope of line of position 12 with respect to line of position I, is
k, and if the angle included by the two linss of position is called @,
then

tan o = k (19)

(20)

Therefore, when the standard deviations of the distributions of the two
lines of position are vqual, the major and minor axes of the contour lines
of equal probability on the nonorthogonal bivariate probability distribu-

tion are midway between the lines of position. (Compare Method 1.)

With the cross-product term eliminated by rotation through the angle

6 defined by equation (17) the desired probability is given by
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2 2
r 1/ y
k i+ )
: SPye - —7 e T\ dxdy (21)
e ' S 4 kYoo, ), )

From equation (16), the variances o? und 03 may be found [rom

= -——-———————u[(aé i U% + kﬂug) cos? 9 + 2k0f sin ¢ cos 6 + kzof sin? 8] (22)

_ 0 | e o . B , oL
N e e e [(02 + 0% + kio?) gin® O ~ 2ko? sin O cos O + k%2 cos? 8]  (23)
7T g o 72! 81 1 : 1
o o v )
y 142

Values of UE and d:.are needed so that equation (21) mayfbe solved by>mcaps
- " of existing tables of the bivariate normal distribution whose use will be
discussed in the next appendix, ~Once O has been found using equation (17)
the preceding two equutiqnsAcén be used to calculate of and 05;,:1: might
be objected that this is a laborious process, Fortunately it is possible
to obtain equations for o?
By adding equations (22) and (23), thus obviating the need for the auxiliary

computation of the angle 8, we obtain

and Uf as simpler functions of o, o,, and a,

] 1
e a (24)
or o oy o}
Also from equations (22) and (23)
Y] . 2
ole? = ol (1 + kDY AL} v ol +k%]) - skiof + kiot) sin® 6 cos? 6
+ [k¥od = kol (02 + o + k%)) sin O cos O (cos? @ = sin? 6)
-1
t k'oled + o + kol (sin® I + cost G)) (25)
From equation (17) it follows that
2kU;
sin 20 = (26)

2 K
{[Qka‘f] + lod(l ~k?) +ol(1 ¢ k2)]}
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ol (L = k%) + of(1 + k)

cos 20 = 7
{[2ko2 + To3(1 - k%) + of(1 + k)Y

(27)

By these equations together with the following trigonometric identities

2 sin @ cos 6 = ain 20

cos? 6 - gin? 8 = cos 29

~ and

sint 6 + cost & - 1 -2 sin? § cos? @

equation (25) can be simplified to

2
(1 + k )afag
kz

* Since

k = tan a

. where 0 is the angle between the two lines of position,

. _
—k - = sin? o
1 + &k

and equation (31) may be rewritten as

When equation (34) is combined with equation (24),

ol + of
0.2 + 0.2 =
x Y . 2
s51n a

Equations (34) and (35) can be solved for Uf tnd U:

1
cf - ‘"—_“_—'[Ui + ag + /(of tol)? - 4(gin? a)a?&%
2 sin? x
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(28)

(29)

(30)

(30

(32)

(33)

(34)

(35)

(36)




o - _~__L___ [o 2 + 02 V( 2 + n ~ A{sin? a)ufug] (37)

2 sin? «a . ' |

- o~

With the aid of tubles of squares and squares of sines of angles (Bef, 10,
for example), these equations may be solved to determine numerical values,
lt is to be noted that the equations ave in terms of variances; to obtuin
standard devintions as desired for some calculutions square roots must be
taken, It is also to be noted that the formulas for the two desired func-
tions differ Only in the sign before the radical sign.  Thus in numerical
calculation the solution oi one expression provides all the numbers required
for the second.,

For the special case when o = o, equations (36) and (37) may be greatly

simplified as follows:

1 :
e S — {2¢% + Vaob = 4 gin? 0¥} - - (38)
2 sin? a ) ) '
1 2L g fe———y— .
- {202 + 20 V] = sin* W} (39)
2 sin? « '
2 (20%[1 + cos al) (40)
2 sin? «
1 + 14
s o 2087 2 (41)
sin? «
V1 t cos a
v, = ——— (42)
sin a
Since
a 1 + cos « (43)
COos 2 2 e
sin @ = sgin 2{a/2) (44)
Then
ov?
g‘x = —— e —————— (45)
2 sin il
2
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and similarly

ey
O e— (46)

o
2 COY e
2

The ratio U’/vl (= ¢ of Method 2, Section 2) is useful in further conver-
sion of the error ellipse to circles of cquivalent probubility and may be

readily seen Lo be

—— = ¢ = tun /20 when o, = o, (47)

4. ALTERNATIVE FORMULAS

Reference 9 lists the following formulas for o and o,

o? = =—-(Ui_+ Ug) csc? a + o, cot 0 csc 24
X 2 .- R

7 1 , _ L
O: = — (o1 + 03) csc? @ - o, cot & csc 20

,U? sin 2d

fan 26 =
2

oy cos 20 ¢ ol

2

6 is the angle between o, and o as in the foregoing annlysis,

Although the expressions of equations (36) and (37) initially appear
lengthy, experience has shown that they are well suited to computation,
They have the advantage, too, not possessed by the alternative formulas,
of not requiring awuxiliary computation of additionual functions before the
given values muy be entered into the formulas. HEquutions (36) and (37)
utilize only the basic input data—the errors along the given axes and
the angle between these axes, Available handbooks of mathematical tables
(Ref. 10, for example) contain tables of squares and also of the squares
of sines of angles so that the numerical values needed may be readily
obtained, Although a desk calculator is hundy, slide rule computations

are not difficult and are of sufficient accuracy for systems evaluation.
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APPENDIX C

EXAMPLES OF THE USE OF TABLES OF THE
BIVARIATE PROBABILITY DISTRIBUTION

-1, INTRODUCTION

‘Refergnce 1 contains the most extensive set of tables applicable to© .
bivariate normal distributions., The use of ‘these tables requires the
calculation of certain auxiliary functions, which are descfibéd in this : :
section., A number of problems illustrating the use of these functions

" and tables follow,

Let Pr{alu§‘+ azug £ t) dehotéftherbrobabiliby that a‘randomly chosen

point will fall inside an ellipse whose equation is
auj t auf = t (v

where u, and ﬁz are stochastically independent normally .distributed variables

with means equal to zero and standard deviations equal to one. By defi-

nition,
ay ta, = 1 (2)
then
. - 2
P,(a,,a,;t) = P {aud + ayul S e} (3)
and 2 2
1 lll Ha
- - —_+~
1 2\, 2 o2
Py(ay,ayit) = s e N1 0¥ gy du, (4)
2770.‘10'“2
alu?+¢2u§=t

where o = O = 1,
ul ul

Tables of Py(a ,a,;t) are given in Refs. 1, 2 and 3. Reference 1

gives 120 values of P2(a1;a2;t) to four significant figures, with

T Precedlné page biank




‘andva:.2 with standard deviations o, and o

t = 0.1(0.1) 1.0(0.5) 2.0(1.0) 5.0. (This meuns that t has intervals of

0.1 between 0.1 and 1.0, and 0.5 between 1,0 und 2.0 ete.) and wich

a, = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0,99 and 1,00, Refereuce 2 gives

149 values of P,(a ,a,;t) to five significant ligures, with ¢t = 0,1(0,1)
1,000,5) 2,0(1.0) 5.0 and with a, = 0.5, 0.6, 2/3, 0,7, 0.8, 0.875, 0,9,
0.95 and 0.99. Another table in Ref. 3 gives 150 values of the inverse
of a quadratic form in two dimensions, i.e., the value of ¢ which cuuses
Pz(al,a2;t) to have u certain value, The values of 4, are the same as

in the preceding table, und P = 0.05(0.05) 0.30(6.10) 0,70(0.05) 0.95.
Reference 3 gives 2881 values of Pd(“i'az;t) to eight significant figures
with ¢ =°0.005(0,005) 0.10(0.01) 1.00(0.02) 2.50(0.025) 3,50(0,05) '
5.00(0.25) 6.00(0.50) 7.00(1.00) 10,00 aﬁd a, = 0.5, 0.6, 2/3, 0.7, 0,75,

0.8, 0.875, 0.9, 0,95, 0.99 and 1,00,

. These tables can still be uéed even if the two variables do not have
unit stgndurd-deviabiunsf ConsiderAtwo normally.distributed vq;iables %,
- respectively, If the bivariate
probability integral is ‘evaluated over the avea inside an ellipse

2 4 2 2 '
byxy * byxy = r (5)
then
F 2
1f*1 %2
e o] - w—
2\ 2 2
< 1 o o
P,(ble + bzxg 2 r?} = ¢ 1 "2 dx,dx,
2nozlcx2
o
byxdep,lu,?
(6)
In order that
2 2 < 2 . r < - .
Pr(blxl *obyxy = ¥} - P,1a1u2 + azug st} = Pyla,a,it) (1)
it i1s necessary that
2 2
byx) by, rt
——— 2 — . (8)
2 2 t
4,4 Gply

where ‘. 1, a constant,




S SO

e e

o ——— e e

Since o

Nince x, x,, wy, and uy, wre ull normally distr

and

. und Ta

“and

and

or

equal one,

q 2
.\7) Ul
. .2
le Uul
2 2
¥y Uy
2 2
Y Y
: x2
g 1
ul e —

2
crxl
x]
2
Uy = .
- 2 .
U:?

Whun these values are substituted into equation (10)

2
byo,

G

i

2
b2ax 2

a = et s

2 C

Since by definition the sum of a, and a, is one,

byt byl
4 — = 1
C C
< g
¢ = bot byl
79

(9)

{(10)

(1

(12)

(13)

(14)

(15)

(16)
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Theretore

1 x% 32
g Pall W 7
1 2\gd 52
Pz(“1'“2ft) = 5;;_—7_ ¢ sl %2 dx dx, (18)
g
17 x2
blxgl"b'z'?}"-rz

where a, azund t as functions of b, by, UEI’ ufzund r® are given by
cquations (13), (14), (15), und (16). These equations disagree with the

oncs given in Ref. 20 as the above derivation shows, Rel. 2 is wrong.

TWhunquuutiou (20) is substituved into equation (21) of Appendix B,

ka: 192

P, = ———t—y Pylaayit) . (19)
oo (174 k?)

But from equAtfbn (31)..Appendix‘B,,

1.
(1 + k%Y
(rx lUxZ o ——_r__ CTIO'2 ’ (20)
30
P, = Pyluy,ayit) (21)

Therefore, in the general case, P,, the probability of being within an

ellip=se, blx% + bzxg « r?, can be read dircetly {from tables of Pz(al,az;t)
after a,, a,, and ¢t have been calculated means of equations (36) and (37)
of Appendix B and (13), (14), (15), and (16). In the special case with

which this memorandum is concerned, finding the probability that the true

position is within a distance r of the indicated position, the calculations

are still simpler. The ellipsc bLecomes a circle, blx% + bzxg = r?, and
by = b, =1 (22)

By substitution using equations (35) of Appendix B and

C = = (23)
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Fquations (13) to (15) simplify vro

2. PROBLEMS

O i e

11 + |1 = =
2
L L (0]
[ A(sia?
=~ (L -
L (Ul
r? sin? g
t = ———— G——
Ui 4 Ug

+ g?)

A{sin? (JL)U?U%T

2

a

N2 2
x)olug

Y

Tuble C-1 summnrizes the values of the given quantities

(24)

(25)

(26)

in the dif-

ferent problems und the resulting probabil.u.cs Pz(al,az;t).- Where;pbssiblc

the problems have been checked by use of different tables,

can be verified,

Table C-2 1is a briet vable of Py(ay,a,;t).

Table G-1
SUMMARY OF PROBLEMS
PROBLEMS a Ul 0'2 b1 b2 r P2(a1, uz: t)
1 90° 1 1 1 1 1 .0.30347
2 90° 1 1 1 1 2 0.86466
3 90° 2 2 1 1 2 0.39347
4 30° 1 1 1 2 2 0.74244
5 90° 1 2 1 1 1 0.21529
6 30° 1 2 1 1 2 0.59009
7 90° 1 2 4 1 2 0.39347
8 90" 1 2 1 4 2 0.32623
9 60" 1 1 1 I\ 1 0.34230
10 60° 1 1 1 |1 | vE7s 0. 24601
11 60° 1 1 1 1 V3 0.55620
12 60° 1 1 1/2 | 3/2 1 0,39347
13 60° 1 1 3/2 11/2 1 0.34945
14 65°1700 £t | 9200 fr | 1 1 ]1520 f¢ 0,77624
15 65°]700 fe 900 ft 1 v |3040 fe 0.99404
81

As a convenience
to the reader, Tables C-2, C-3, and C-4, abstracted from Ref. 2, are

included at the end of this appendix so that the results presented herc
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The more extensive table of Po(a,,ay;t) in Ref, 3 wus actually used in
working these problems becuusc it has more entrics, und the interval for
interpolation is smaller, Table 2 can be used Lo integrate (1) a circular

probability distrioution over a circulur area, (2) a circular probability

distribution over an elliptical arca, (3) an elliptical probability distribu-

tion over g circular arca, or (4) an elliptical prowbubility distribution

over an elliptical aroa. A bivariate normal distribution such as

2 2
if *1 *2
U .
2 2
]_ R e . 24 1 ‘2
210 19,

is culled a circular distribution when g,y * 9,4 because the contours of
equal probability density are circular. If o, 7o, the,linés of equal
probability density ure clliptical and the bivariate distribution is
called an elliptidﬂl distribution.. Table C-2 can be used Ec.integrate

a circular probability over u circular area, and Table C-3 can be used

(1) to integrate a circular probability distribution over a circular area,
or (2) at the expensc of entering the table twice, to integrate a circular
probability distribition over an ellipticul area, - Since the latter table
occupies several pages, only those pages needed to work the problems in
this memorandum have been included., As a check, several problems have
been solved using Tables C-3 or C-4 or both as a check on the answer
obtained from Table C-2. Unfortunately not all the problems could be so

checked, because of the inherent limitations of Tables C-3 and C-4,

Problem (1)

Given

Find

P2(a1,a2;t)

Since the lines of position are perpendicular (¢ = 90°) and their standard
deviations are equal, the probability distributien is circular, The area
over which the integral is taken is likewise circular, (ble + bzxg = pl

or x% + z% =1) and the area has a radius equal to one standard deviation.
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Table C-2
DISTRIBUTION OF A QUADRATIC FORM IN TWO DIMENSIONS

3

N 0.2 0,3 0.4 0.3
0.09516  0,18127  0,25918  0,31968  0,39%7
0.09%93  0,18439  0,26306  0,33405  0,39809
0,10033  0,19008  0,27033  0.34222 0,404
0.10288  0.19432  0,27568  0.34815  0.41278
0.1081¢  0,20299  0.20637  0,35982  0,42468
0.11581  0,21529  0,30112  0,37550  0.4402
0.13546  0.24A81  0,33434  0.40866  0.47117
0.14808 0,25941 0,34945 a,A2257 0.,48318
0.18130  0.30018  0.38581  0.45206  0,505%
0.23588  0.33838  0.411%0  0.46%6 0,518
0.45119  0,50341  0,55067  0.39343  0.63212
0.43385 . 0,50797  0.53500  0,59746  0.63579
0.46041  0,51625  0.56279  0.60M2  0.64223
0.47048  0,52205  0.56819  0,60952 .  0.64458

©0,48200 0,532 (L5784 0.61839  0,65429
0.49678 . 0.54640  0,50009  0,62672 °  0.66297 -
0,5243% " 0.57011 " 0.,6098% 0.64487 0,67340
0.53423  0,57795  0.61387  0.64910 - 0.67848
0.35133 0.59040  0.62460  0.65488  0.68192
0.55982  0,59615  0,62027  0.63692  0.68366
—dad ol —ta® —ta0 -
0.77687  0.06466  0,95021  0,98168  0,9932
0.770A9 0.86461  0,9871  0,98023 .  0,99227
0.78108  0,0642  0,94600  0,97773 - 0,99057
0.70262  0.86379  0.54A12  0.97608 0,984
0.78491  0.86235  0.94C66  0,97916  0.98752
0.78664  0.36036  0,93653  0,96584  0.98381
0.78670  0.85500  0,92944  0.96A36  0.98160
0.78551  0.85276  0,92695 0,934  0,98029
0.7829  0.8478F  0.92187  0.95051  0.977%3
0.78009  0.04374  0,9177¢  0.93531




o 2

0.01
0.02
0.03
0.04
0.0%

0.06
0.07
0.08
0.09
0.10

011

0.12

0,13

0.14
0.13

0.16

- .0417

Q.18
0.19
0.20

0.21
0.22
0.23
0.24
0.2

0.26
V.27

0.29
0,30

0,31
0.9
0.3
0.34
0.35

0.34
0.37
0.38
°|”
0,60

0.‘1
o.“
0.3
0.64
0.43

Tuble C-3

CRITICAL VALUFS FOR THE CIRCULAH NORMAL DISTRIBUTTON

A

0.1410
0.2010
0.2468
0,20357
0.3203

0.3318
0.3810
0,4084
0.4343
0.45%

| 0.4828
0,505

a.5278 -

0.5492

0.3701

0.5%05
0.6105
OU.M
0.6492
0.6680

0.4066
0. 7049
0.7230
0,740%
0,7585

0.7760
0.7934
0.8106
0.8276

" 0. 8446

0.8613
0.8783
0.8950
0.9114
0.9282

0, 9448
0.9613
0.9778
0.994)
1.0108

1.0273
1.0438
1.0603
1.0769
1.0923

P

i,

0,46
0.47
ol‘.
0.49
0.5

0.51
0.52
0.8
0.3
0.53

0.5

0,87

.58
0.%%

0.00"

0.1
0.62
0.6

0.04
0.63

0466

0.67

"~ 0.68
0.9

0.7

0.7
0.72
0,73
0.7
0.7%

0.7%
0.77
0.78
0.79
0.00

0.01
0.82

0.04
0.83

0.“
0.7
0.0
0.09
0.%0

1.1101
1.1268
1,1438
1.1605
1.1774

l'lm
1.2116
1.2208
1.2462
142637

142814
1.2992
1.3172
1,335
1.353%7

1,3723
1.3911
1.4101
1.4296
1,4450

1.4689
1.4891
1,309

1.5305

1.3518

1.5733
1,3938
1.6182
l.6blé
1.6651

1.6894
147143
1.7602
1,7667
1.7941

1.822%
1.,4519
1.8823
1,914%
1.9479

tl’m
21,0200
12,0393
12,1011
1.1460

84

P 3
0.91 2.1943
0.92 2,2673
0.93 2,3062
0.% 2.3721
0.93 2,447
0.9 2,5373
0.97 2,6482
0.98 2,79
0.9% 3.0349
0.991 3.06%
0.992 3,107
0,993 3,1302
0.9% .3.1987
C.993 3.2952
0.9% 3.3231
0.997 3,400
0.998 3,5288
0.999 3.7169
0.9991 3.7482
0.9992 3.77¢8
0.9993 8117
0.9994 - 3.8519
0.9998 3.8989
0,999 3,9538.
0.9997 4,0278
0.9998 4,1273

. 0.9999 4.2919
0.99995 4,4503
0499999 47985
0.999993 4,9409
0.999999 5,255
0.9999993 5,368
0.9999959 $,6777
0.99999995  5.7983
0.99999999  6.0497
0.999999995  ¢.1829
0.999999999  6.4379
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| ~ NOT REPRODUCIBLE
Table Ce4
OFFSET CIRCLE |’H()BA|H|.|'|'||".H FOR CTUHE GIRCULAR NORMAL DHISTRIBUTION ) l

.

{rq -~ Di/o

-1y 10 17 ~1 8 18 s 4 =) -l e - 10 R ] -8 -7 -4 ) -4 -3

1,000
g1l

1.000
W

BRUOY BUN-D BEIPP AUN—O VEwOS LAWN-O B

1,000

DRSNS WAMUL NRMTENS RPN

—MNRY WwesRe

Qi




"4 g

C o= bpo? 4 bt = () + (D) = 2
2
bog (1)(1) 1
(ll— = -
C 2 )
2
baoy (1)(1) 1
0 = - . 2
2 G 2 2
r? 1
T T T

From Table C-2, Py(a;,ay;t) = 0.39347. This problem can be checked by

Table C+3, This table gives corresponding values of P and B where P is

the probability under the circular normal distribution for a given value
of B, and B = r/o where r is the radius over which the circular normal

.probubility distribution is integrated, and o is the standard deviation

- of the circular normal distribution measured along any axis, For the

values given ubove, B = r/o = 1/1 = 1,000, From Table C-3,

P B

0,39 0.9943
0.40 10108
0.01  0.0165

By interpolation,

0.0057
Pyoy.ogo = 0.39+ (0‘0165) (0.01) = 0,39346

This checks the value obtained above.

A second check is possible using Teble C-4, This table gives q(r, /o, D/0)
which is the probability that a randomly chosen point will fall outside a
circle of radius r, with center at (0,0) when the underlying prebability

distribution is a circular normal distribution centered at the origin and

with its two standard deviations equal to o. Then

"« D s« D
gl —, = = l~-pi—, — (27)
o o a o
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whoere 2.2
. - i x“+y
LI ! - ;(*‘T‘{ )
pl —, — I I P ’ (28)
o 2

2

o

the area over which this integral is taken,
(x = D+ y2 = 2 (29)

ix the equation of w circle of radius "y centered at (D,0). If D is sct
cqual to zero, r,o= 1 ound the standard deviation of the circular normal
distribution set cqual to 1, then ¢(r, /o, D/o) can be read from Table C-4
unﬂ the desired probability found for cquation (27). The tahle of

q(r, /o, D/o) uses (rJn D)/o and D/o as urguments.

rg =D 1) - (0 n
: (, () = 1,000 - = 9 = 0,000
7 e 1 .

o _ 1

u

‘From Table C-3, ¢(1,0) =70.607, 5o p(1,0) = 1= g(1,0) = 1 - 0,607

0.393
which checks the two values previously found. )

Problem (2)

Given

Find

PyCa;,a,it)

This problem uses the same circular probubility distribution as was used

in problem (1), but the distributicn is integrated over a circle whose
rudius is twice the radius of the circle used in problem (1). Consequently
the probabilivy found in this problem should be grester than the probabil-
ity found in problem (1).

C = byl « bl = (D) F (L) = 2
bl )1
a = X - B
¢ 2 2
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R 4

2
T B 140 I Y
‘2 C 2 2
r? 4
tow == = o= = 2
¢ 2

From Tuble -2, Pu(ul,az;t) = P2(0.5,0.5:2) = 00,86466

This answer can be checked by Table C-3. B = p/o = 2/1 = 2. From Table C-3,

P B

086 1, 9830
0.87 2. 0200

0.01 0.0370

"By interpolution,

0,017 '
P, = 0.86 + ——= (0.01) = O.
- o ¢ | 1) 0.8646

A sccond check is possible using Tuble C-4, From the given quantities,

rg =D (2) - (0)

= = 2,000
o 1
2 = 0,000
From the table
Ty D
gl—, — = ¢{(2.000, 0.000) = 0,135
oo

and

= 1.000 -~ 0,135 = 0.865

it~
N
qf
LU=

n

1

)
P
qlJ

{
s

Problem (3)

Given

a8

e




e o

Find

Pylap,ayt)

This problem is similur to the Tirsy problem in thut the probabilivy dis-
tribution is cireular, although in this problem the circular probability
distribution is wider und iLs maximum is lower than the ecircular distribu-
tion in problem (1), Becnuse the area over which the integral iy tuken
is increased in the same proportion as the standard devistion, the praob-

ability in this probiem is the same as the probability found in problem (1).

C = bt dbet, = (D) + (M) = B
2
b (1)(4) 1
”1 2 m—— = - = ~
C 8 2
2
byohs () 1
a2 = 3 T =
¢ 8 2
- ré 41
G 8 2

From Table C-2, P,(aj,a,it) = P,(0.5,0,5;0,5) = 0,39347. This answer

can be checked by Table C-3. B = r/o = 2/2 = 1.- For B = 1,
P = 0,39346 as shown above for problem (1). A check by means of
Table C-4 is also possible,

ra T Dy - ()
u ) 2 =1

D
- = 0
o

"4 D

QQf. - = q(l, 0) = 0,607
o} [e)

= 1 =0.607 = 0,393

-]
TN
ol
Qo
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Problem (4)

Given

Find

Pz(al,uz;t)

This problem uses the same circular probability distribution as was usecd
in problem (1), but the area is now evaluated over an ellipse whose semi-
mojor axis, 2 units long, lies along the x, axis and whose semiminor axis,
1 unit long lies along the x, axis, Since the same circular probability
distribution is used in problems (1), (2) and (4) and the area of integra-
tion in problem (4) is inhermediate‘between the areas of integration used
in problems (1) and (2), the probability in this problem should fall be-
tween the probabilities found in problems (1) and (2).

€ = byo? + ol = (1) +(2)(1) = 3

27 x 2
2
oy (1)(1) 1
(Il = = = ——
c 3 3
- ) 7
09932 (2)(1) 2
q = = =
2 c 3 3
r? 4
t = —— =2 PR
c 3
Po( t) P L z 4 0.74244
p\d) , U5 = ’ ] = .
2 1 2 2 3 3 3

Tuble €-3 cannot be used because it is applicable only when the area of
integration is circular. Taple C-4 can be used to handle integration of
@ civceular normal distribution over an elliptical areu. Let

P,(ble + bzxg S r?} denote the probability that a randomly chosen point

will lie within an elliptical area b,x? + b,x} = r?

when x, and x, are
normally distributed with unitary standard deviations, which is the same
as the integral of a circular normal distribution with the same standard
deviation integrated over the area defined by that ellipse., Then

<

P.lb 2t + byxl S r?} < q(B, A) - q(4, B)

LS
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where

and

v
]
o j—

q(B' A)

u
)
- >
QIn.
o
3=

“In order to find q(B, A) Table C-4 must beléntered usi.g the values

(ry - D/ and D/o for the arguments.

v , ra1 Dy
(](B, A) = g\—, «=

o a
TR
- w 0,293 ~ 1,707 = ~1.414
{
L,
— = 1,707
o
By interpolation,
Q(B. A) = 0-990
rag Dy
q(A, B) = gle—, — = g(1.707, 0.293)
o a
ras = Dy
— = 1,707 - 0,293 = 1.414
o
b,
- = 0,293
a

By interpolation,

g(A, B)Y = 0.248 .

9




Finally

Pr{blx% + beg <y - g(B, A) -~ y(A, B)

= 0.990 - 0,248 = 0,742

This checks the previously obtuined value of Pz(al'az;t)

Miaoblem (5)
Grven

¢ = 90° o =0

1 xl - 1, oy = 0,5 =2, b, =f1' by =L, r <1

Find Pz(al,az;t)

Becouse the stundard deviations of the bivariate normal probability dis-

tribution are unequul, the contour lines of the distribution are'éllipses
with their major oxes lying aleng the z, axis. The integral of thg'ellip-
ticul probability distribution will be found over u circle whose radius is

une,

C o= "byo? ¥ b0t = (1) * (1)(4) = 5
2
6193 (1) (1)
al = = ” 0.2
c 5
2
o L VT W@
2 c 5
e Y
SCc 5 ‘
Py(a;,ay5t) = P,(0.2,0.8;0,2) = 0.21529
Problem (6)
Given
¢ =90°% o =0 =], 0, =0 =2, by=1,b,=1 r=2
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Find
Pya,,a,;t) - ‘ +
This is the some as the preceding problem, except that the radius of the

circle over which the elliptical distribution is to be integrated has been
doubled.

C = bod+ bol, = (1)(1) + (1)) = 5
b,o?
o, = —= = 0.2
' C
bt 0.8 1
q = = .
2 C ]
4 ot (2)? : -
t_~—CJ-%T=0-B | :
P,lay,a,:t) = P,(0,2,0.8:0.8) = 0.59009 o R 1
Problen (7)
Given
a=90°.01=‘7,1=1|02=0,‘2=2.b1=4.bg=l.r=2
Find

Py(a,,a,;t)

The elliptical distribution is the same as in the preceding two problems,
but now the integral of the elliptical distribution is to be integrated
over an ellipse whose major axis is parallel to the major axes of the

ellipses of equal probability density on the elliptical distribution.

C = bot +bo?, = (A1) + (1)(4) = 8
blasl (4)(1)
al = = = 0.5
C 8
2
O B ¢ DIC
2 C 8 '
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4
t - :-- = — - 0.5
c 8
P,(a,a,;t) = P,(0.5,0.5;0.5) = 0.39347
Problen (8)
Given
@ =90% v =0 1,0y =022 b =1, by =4 r=2
Find

Pylay,a,it)

This problem uses the same elliptical probability distribution and the
sume elliptical area over which the elliptical distribution is to be
integrated, except that in this problem-the elliptical area h@é been .

turned 90° so that its major axis is parallel to the minor axes of the

'.cuutbgfs of’eQual probability dénsity of the ellipﬁical probability

distribution,

C = bol) +hof, = (1) + (4)(4) = 17
biorr (1)) |
. . == . 0.05882
4 c 17 8
byol, 4)(4) 1
0, - =2 W 16 g
C 17 17
R ! 0.2353
T R

Pyla ,a,it) = P,(0,05882,0,9412;0.2353) = 0.32623

Problem (9)
Given

a=60° o, =1, oy =1, by= 1, by =), r ol
Find

Pz(al'az;t)
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In a1l of the previous problems the lines of position have been assumed
to intersect at right angles, In this and the remaining problems in this
memorandum, angles of interscction other than 90° will be used. The arca
over which the elliptical probability distribution is to be integrated
is a circle of unitary radius centered on the origin, so equations (24)

to (26) can be used,

l
1 [ A(sin? a)o%a%WA
U L L
L (0 + o) ]
. 3 uy -
4(=] (L) (1
AR RN
= — l+ 1" = — l+ -1 - —
2 1 (1+1)2 J 2 4 4
_ 3 4%
1 ,’l 4(sin? a)olo?] ™ 1_{1 [1]'/:}' 1
a = — - e e —————— a — - - s -
: 2 ] (o +U§)’ 2 4 4
W)
, . risin? o 4) 3
ot 4ol o 141 8
Pylay,apt) = P,(0.75,0.25;0.375) = 0.34230

It is also possible to solve this problem by first solving for afl and

032 and then using equations (14) to (17), as in the previous problems.

1 2 ) Y.
0 = {02 + 0¥ + [(0? + 02) = 4(sin? a)o2ci]?}
x1 - 1 2 1 2 17
2 sin‘ «

-

2 3 %
1 +1 + [(1 t 1) = 4(2) (1)(1)] = 2

) 1 2 2,2 . 2 2 217 2

ol = m———— {g-% + of - [(g-% ¥ 0-2) - 4(sin (y,)o-lo-z] Y - =

x s 2 3
2 sin‘ o

From these values, the contours of equal probubility density are ellipses

satisfying the equation (xf/Z) + (31%/2) E ki. The ellipse with k = |
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PROBLEM (10) r = /%
2 2
PROBLEM (12) X + 3L

=
PROBLEM (9) r & |

PROBLEM (I r =42

1.5

TA=-2187~ 140

FIG, C-1 PROBLEM ILLUSTRATIONS

is shown in Fig. C-1 together with the circle over which the elliptical
distribution is integrated.

2 2 2 8
C = bo? + b0l 2+-§ - 3
2
by, (1)(2)
a, = —— = 0,75
¢ 8
3
2)
2 -
bZUxZ (1)(3 0.25
a = = = .
3
2
r 1
t = — — = 0,
C B 375
3
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Problem (10)

Given
o 2
a=60.crl=1,02=1,b1=1.b2-1,r=E

Find

P,(a,,a,;t)

The elliptical probability distribution in this problem is the same as

in the preceding problem, and the only difference is that the radius of

~the circle over which the elliptical probabilicy distribution is to be

integrated is reduced to 0,8165. ~This circle is also shown in Fig, C-1.

Therefore a, and a, are the same as in the preceding problem.

Pylaj,apit) = P,(0.75,0.25;0.25) = 0.24601

Problem (11)
Given
@ = 60° o, =1, oy =1, by v 1, by =1, r = V3
Find
P,(a,a,;t)
This problem is the same as the preceding two, except that the radius of

the area over which the elliptical probability distribution is to be
integrated is now 1.414. This circle is also shown in Fig. C-1.

¢ = 0.75
a, = 0.25
2 .2 gé)
- r 2aln 2a . 2 . 0.75
o] t o} 2
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P2(a1,u2;t) = P, (0,75,0.25;0,75) = 0.55620

Problem (12)
Given

1 3
@ = 60%, oy v 1,0y = 1, by - g ey b

Find

Py(a;,a,:t)

- This problem uses the same elliptical probability distribution as the

three preceding problems, but now the distribution is to be integrated
over an area given by the ellipse (x?/2) + (3x§/2) = 1, This is the same
ellipse as the contour line in Fig, C-1, where k, = L. From problem 9,
Ufl = 2 and 052 = 2/3,

L 1 v
£ = bo?, +bel, = = +(->(—)- .2
17 x1 ‘ 27 x2 2 (2) 3 P
- ‘ ,
2 -
boy 2(2)
a = —= sy o+ 0
62032
¢, = G = 0.5
t = r? 0.5
c .
P,(a,,upit) = P,(0.5,0.5:0.5) = 0,39347

Probhlem (13)

Given

° 3 1
a=60101=1102=1)bl=§,b2=-é-‘r=l

Find

P,(a;,a,;t)

This problem uses the same elliptical probability distribution and an

elliptical avea over which the elliptical probability is to be integrated

98
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that is the same size and shape as the elliptical arca in the preceding
problem, except thut for this problem the elliptical urea has been rotated
through 90°., The relationship of this ellipse to the probability distribu-

tion can be seen in Fig, C-1,

C = byol, + bl = (2)(3/2) + (2/3)(1/2) = 3(1/3)

b9t (@)(3/2)
@ - . == - 009
l C 3(1/3)
2 ' '
.. b0 (2/3)(1/2) 01
¢ 3(1/3) B
r? 1
s e v ——— = 0.3
R TEVE Y
Pyla,,apit) = P,(0.9,0.1;0.3) = 0.34945

Problem (14)

Given two lines of position which intersect at an angle of 65° and which
have standard deviations of 700 ft and 900 ft, respectively. Find the
probability that the indicated position is within a quarter of a nautical

mile of the true position,

By the given quantities, & = 65°, o, = 700 ft., o, = 900 ft., b, =1,
b, =1, r = 1520 ft.

( 2 22%
0 - %-41 ' [1 _ 4(sin a)olcé]
2 2
(o] + Ug)
1 j 4(0.82139)(700)2(900)%]
= =1 + [1 - . - = 0,739
2| (7002 + 900%)2
a, = 0.261
r? (1520)%(0.82139) &
t = - — + 1,460
ol 4+ o (700)* + (900)?
Py(a,,ayit) = P,(0.739, ((261;1.460) = 0.77624
99




Problem (15)

Given the sume conditions in the preceding problem, bLut the probabi[ity

that the true position is wituin half a nautical mile is desired.

a, = 0.739
w, = 0.26]
. rf sin? @ . (3049)2(0.82139) -
ol + ol (700)% + (900)?
P,(a,ayit) = P,(0.739,0.261;5.84) = 0,99404
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APPENDIX D :

DERIVATION OF METHOD 1 FORMULAS

[ INTRODUCTION

Method |, es described in the body of the memorandum, initially
treuts the sbeciul case wherce o = 02; Early in the performance of this
project the probability curves for this case shown in Fig. 7, Section 2,
were calculated by a digital computer program. However, because of their
limited application, little use could be made of them until the further
: pperations involving the fictitious o* and a* were developed. A'step in

the development of these functions was the derivation of an alternativq
set of formulas for o, and T, This alternative set involves the computa-

tion of auxiliary functions which were then found to lead to the formulas
for o* and w«*.

This appendix discusses in order the development of the probability j
curves P(R/o,a); the development of the alternative formulas for o, and
o, and then gives a derivation for the formulas of Figs. 9 and 10 of ?

Section 2 that utilizes relationships developed in Appendix B as starting
points.

2.  DEVELOPMENT OF P(R/c,a) CURVES

Given, as in Appendix B, the intersection of two lines of position
ot an angle «. However, this derivation is limited to the special case
where the two associated standard deviations, o and o, are equal. In

this special case, Equetion (5) of Appendix B may be simplified to

p . ” om (1720 ¥4y g . (1)
2me?

Since we want to work in orthogonal coordinates we shall proceed to
transform to new orthogonal coordinates £ and 7 where the 7 axis bisects
the angle o« (Fig. D-1). The choiceof this positionisto reduce the algebra )
later on. L
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TA=2167-14|

FIG. D-1 TRANSFORMATION OF AXES

Take an arbitrary point Q. We want to find its position along the
x and y axis in terms of ¢ and 7. Take the vector m from the origin 0
to Q. n =L Tg + Tﬁ‘n where TE and T'n are unit vectors along the € and 7

axes respectively,

l, and l’ are unit vectors along the u and v axes respectively. To
find the projections of m on the u and v axes, we dot it with the respec-

tive upit vectors.

- 5 T 0T el T . a
u = m l, = 55 ,*nln L, = Esxn—é-*'ncos-Q—
(2)
- - - - - Q o
v = n ly = flg' ly+'r)l_n' ly = *sin-a-+ncos?
(3)
coud b . 2(52 sinzi;"*' n? cos? ‘-g') (4)




iR e

[TRET
dude ] d€dy 7 win adsd) (5)
1 e »,’.
| _ [{:2“"2 %- + n2con2 -;-’-:l :
2
dp = — v sin adfdn . (6)
2aer?

We are pow in vegulav orthogonul uxes & and 7. To find the probabilities

the cirele of radius [ owe integrate dp over the circle.

in
‘ R e /32_‘52 | ~_[€2““2 _;_;’+1’2°M2 %] .
p e 4| —_— o sin adédn . (7
| Sy
§ E=0Jn=0 N
“let
. . 2]
g . rcosasin-; 7 ' . (8)
and
7 = r sin O cos {9}
(o o
d&dn = J ”) drdp = ——— drd (10)
ro @ ain ¢
and
. 2 s 2
YR i f+ sin ‘ﬁ 4 (1)
sin? 7; sin? =
We therefore have
r=R\//7°°' + win ¢
b=m/2 sin® cua % | —<L3
2
p = 4 —_—e YT 2rdrdd . ()
¢=0 ra0 277”‘2
105




-— T

P

-

- PO

Performing the first integration

)n2 [ B ! e
ﬁ/\/lin2 a t':x::2 2
, T £

9 n/2 gl
R e 2 def (13)
0 0
9 /2 “ﬁ/<c052__¢ . sin2 ¢\ o
p = __T_T_{ 1 - l”i sin -g- vos” o de (14)
0 .
or
/2 - nz/(uuu2 b 4 Ain ¢> a
' 2 —5 ] ¢ tos 3
p = 1-_[ 1 @ in® g i/ d¢ (15)
0

This integral cannaot be evaluated analytically., A sclution was ob-
tained by a digital computer program and the results have been presented
in Fig. 7, Section 2, and numerically in Table [, Section 2.

3. ALTERNATIVE FORMULAS FOR o, AND o,

Additional formulas for o and o utilizing auxiliary functions were
X
also developed in the course of the analytical investigutions of this study.
The esdditional formulas are given below, followed by the derivation that is

developed using the methods and notation of vector algebra.

o - o sin 28 (16)
ﬁ\/] - V1 - sin? 28 sin? a
o, = —5;-2_— sin 25 (17)
V1 + /1 - sin? 20 sin? a
where
I =1

1 2

4

arctan 02/01
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from which

The cootdinate syste

' ‘ 20,6,
a4t ‘2[} " i —— et

2 -
a7 +

G
[ % ]

ms are exhibited in Fig. D-2.

‘*"'U‘

Since

and

TA-~2167 142

EFI1G. D-2 COORDINATE SYSTEM

2, Uy ¥ %l
5

x, cos O+ x, sin ¢

1
xy cos{a + &) * %, sin(o * &)

(18)
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Now if (A,B) are a pair of vectors where A = (4,,4,)8 = (B,,B;) note the
identicy: '

(Ayx, + Byag)? + (Ayx, + Bpxp)? = |A|2x2 + 24 + Blxyx, +|B22]

= |x4 + x,8]7 : (19)
Let
A = lcos 9/0‘, cos (o + 9)/oh]
(20)
B = sin 5/0', sin (o + 6)/0h]
Choose 6 so that A4 * B = .0, that is, ' '
cos € sin 6 cos (¢ + 6) sin (e *O)
2 ’ 2 .
s h
or equivalently:
v : ' = 2 N
1 Oi h
g = 5 arctan tan o) ~® ) (21)
oi +o?
By this choice of 0 with the help of (20):
. : sin a\?
lal2|Bl2 = jaxBP# - . (22)
oo
g h
Define
o, = O cos B
. (23)
o, = 0 sin B
Then (21) may be expressed
1
g = p {arctan [cos (28) tan a)-u} . (24)
Temporarily define
2
G =
o? sin? 28
H = cos 20 sin? 8+ cos (2a + 20) cos? B
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~then -

~lal? = G+ Hand |B|2 = G-H

Now in priﬁciple one could use (24) to eliminate & from (21). We shall

toke 4 computationally simpler ulternative, With the aid of (22) we write:

. .9
. . o 4 0
Gt - p? - |al?ip]r < 22 . g - 9G sin? o/o?
olol ot sin? 28

Hence

W - 'Gz - 2G sin? a/o?

and
1al2 1Bl2 = Gt (6P - 2G sin? afo?)%
Therefore
1 - 1 2 o
el e — (G £ (G* - 2G sin? a/az)%}
|A‘2 |B|2_. %G sin? a -

q
L]
(]

[ =T K7
(o]
~N
=

-

H-
/'\
t

(%]

o le

515

“‘IO
=

N

e

———b

1 £ (1 - sin? 28 sinZa)¥

By letting ¢ = 7/2 we identify in the foregoing “+" with 1/1B}% and “="
with 1/14]2. Finally we note that by (19):

1/1al? o,

"

1/181?

o
¥

i

The auxiliary functions o and B are useful in the formulas for o* and a*
that form the basis for the Figs. 8 and 9 of Section 2. The formulas for

these special functions were originally derived from the just derived
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formilas for o, and o, A subsequent derivation that starts from formulas
of Appendix B, however, is easier to follow,

Formulas (16) and (17) of this section may be shown to be equivalent
to the equations developed in Appendix B (36) and (37). To do so it is

necessary to suhstitute the equivalents for o and 8 given in this ex-
pression.

The first step is to square Equation (16) to eliminate one radial in

the denominator as a simplification

g'i ' sin? 23

2 1-A4°= sin? 28 sin? «

o! -
X

Now, substituting '

2 . 2 2
o o + Ty
, .
| ioto}
sin? 28 = : .
(o + o2)?

2 3
20 13

(o + o) | . 4o G';' _ 72
- sin® d
(0'2 + 0-2)2

4cr ol
1+ 2 sin® ¢
20dol (cr2 + ol)?
< ,

—

(o2 + o?) 4olot
.2
san® o

—
t

(0'2 +a-2)

- s 2 2 2
Io- +cr2 4 sin ooyoy

‘71 + o}

(crf +0‘g) X
2(c? +ol)? sin® o
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(02 + o) +V(o? + 0d)? ~ 4 sin? olo?

QED

Simiiarly, except for.chénges in sign we may show that oi'from this section

is equivalent to Equation. (37) of ‘Appendix B.

4. DERIVATION OF FORMULAS USED FOR CURVE AND NOMOGRAMS
IN SECTION 2 ’ ; ) oo

In the body of the memorandum, Secbionv2, these formulas were given

as the basis for Figs. 8 and 9. This curve and nomogram permits the con-<’

version of unequal o, and 02'associated with the intersection angle d to

"a fictitious pair of equal standard deviations o* and a fictitious inter-

section angle o*. Following these conversions, the probability curves of

Fig. 7, Section 2, may be entered.
a* = arcsin (sin 28 sin @)

2
R/o* = R csc 28
Vol + ol

The derivation starts from Equations (34) and (35) of Appendix B.

In any error cllipse we have

olo?
Uioi = Appendix B (34) (27)
sin? a
and
0% + og
ol + ci = — Appendix B (35) (28)
sin? o
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We assume that the same distribution may also be described by
fictitious functions o*, o*, and a*. Thus substituting in the formulas

above
ot
0303 - (29)
sin? a*
and .
»
P . L (30)
f Y sin? o*

~equating the right-hand sides of Equations (27) with (29) and (28) with
(30), we obtain ‘ L : L :

ogag.‘ ged . e
- —. n — (31)
- sin? @ sin? o*
and
0‘% + O‘g - 20102_ :
sinZ ¢ - sin? a* '
From the second.of these we get
sin? a*(o? + ol) _
70"2 = - n " . . . (33)
2 sin? a o
Substituting in the first we get
olol sint a‘(af'+a§)2
- . (34)
sin? « 4 sint o sin? a*
4 sint aafvg
el W .
sin® q* = » " (35)
; 2
sin® afoy tay)
20,0, sin @
sin a* = -—'—'—2" ] . (36)
2
o] oy
From Section 3 of this appendix we obtain the following:
Define
B = arctan o,/o, 37)
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Then
' 02
sin A = -
Vol 1 ot
a'l + 02
und
9
cos B = —
)
of t oy
Thus
. 2049y
sin 28 = =~ -
gy t oy

_ Substituting (40) in (36) we get

sin o*

Substituting Equation

o* 2 =
og* =
1.
o-‘
Thus
R/o* =
where
csc 28 =

u

sin 20 sin «

‘= arcsin“(sin-Zﬁ sin o)

(41) in the éxpression for o*? (33)

" sin? 28 sin? d(af + og)

2 sin?2 o

sin 2f/o] + UZ
%

V2
sin 2&/021 + 022

2 csc 28

\/crf + cr2i

sin 28 20,0,

113
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(39)

(40)

(41)

©(42)

{43)

(44)

(4%)

(46)

(47)

(48)
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APPENDIX E

COMBINATION OF MULTIPLE ELLIPSES

The basic elements of the combination of several ellipses with ran-
dom orientations of their axes have been given in Section 3 of the basic
Memorandum (msee Fig. 15), ‘Each ellipse is expressed by its individual
values of o, and o, and the orientation angle 6 with respect to the arbi-
trarily selected w and z axes. The first step in the combination of sev-
eral ellipaes is to transform the individual values of o, and o to values

y
along the w.and z axes. Such a transformation will be shown to involve

also a croas-product function p in addition to the new standard deviations
o, and o,. The necessary transformation equations are the standard ones

for the rotation of coordinate axes.
W = xcos &~y siné

z % ycos O+ x sin 0

or equivalently;

X ®» wecos @+ z sin @

sin 6 .

e

y = 2z cos @ -

The original distribution in terms of x and y is given by

2 2

P [z_ + 1_]
2 | 2 2
Ol O‘y

flx,y) =

™ O
2 y

Substituting the transformed values for x and y, we obtain

[. g + i 92+cho-9"ILitLG)2]

oy azx

flw,z) =
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.Conaidering now only the exponént of the general expression of an ellip-

tical bivariate distribution, which is

. 1 10_?_ 2pwz . _z_z_
2(1 - Pz) O'E 9, 7l '

2

one may equate these two exponents and solve for o , o, and p, First,

multiply out the trigonometric terms in the first exponent

1|w? cos® 6 , 2wz 8in O cos 6 22 sin? 6 . 12 cos? 6 2uz sin O cos 8 . w? ain? 8
2 2 2 2 R 2 ‘ 2
o2 S o? o ol o o?

rearranging terms

oo i 2 . ‘ . : o 1 2‘7 ")
._.1. w2 |- +:’.l."_£ ~- %z |sin 6 cos .L...l_ 422 E_n‘_9+cos
2 v o? og? of o of |
. . y : ‘ y sl x ) y _

The bracketed coefficients in each term may be replaced by A, C, and B,

‘ respectively, to give a simplified expreasion

1 ,
- E (w24 + 20wz + z%B]

This simplified expression may now be equated to the general expression
of the exponent and solved for the desired functions by comparison of

similar parts,

1 2 2
w?A - 20wz *+ z°B = LA 2puz I
(1 -pde? o0, of

sz - 1 ﬁ
1 = p? oa
ol = 1
(1 - phHA
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Thus the formulas for o, o

similarly

ol « 1
(1 - p2)B
—oCus - - B
oo

Substituting the values obtained above for o and o,

p(l - p?) VAB
(1 - p?)

, and o indicated in qution 3 have been de-

rived, " The subscript { used in Section 3 indibgtea_the particular ellips§

by number where i =1, 2, 3 ... n,

, Following the computation of the functions pertaining to each sepa-
rate ellipse with respect to the v and z axes, it is then necessary to
combine these to obtain the parameters of the final cdmbined error ellipse.
Since the final error is the sum of individual errors, then the moment-
generating function of the final distribution is the product of the

moment -generating functions of the individual distributions (since the

distributions are independent). The moment-generating function for w,

z, is:
1 2.2 2.2
;(tla" + 2p‘lltza'icr“ + eZO"i)
mt(tl'tz) L]
Now
1 [2(2 2 2 ) ( )
n » [tSfot 40 + ., & +t 2t ¢,(po 00 ¢+ . pE O
1\ " v 12V Vv, 2 nwe 1
m(t,t,) = T om(e,t,)e=e ? 1 2 2 14 n *n

i=]

2 2 2 2
+ ts {0t ¢+ + ., 0O
2( ) 29 l")]
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where m(t,,t,) is the moment-generating function of the final distribution )
and .
1 2 22 :
-t + 2Pt t,0 O t t.o )
( 1 v’ i1 2!, g 2

m(t, t,) = e ? 't

Identifying similar parts, we have

ot =« 3 g?
v v,
f i=1 L
”. .
ol « I g
z 2
f =1 ¢ E
i
1 n L
o, = E po. o ,
4 0"0'. i= ] f ot

’Having thus obtained the parameters of the final combined error - oo
ellipse with respect to the arbitrary w and z axes, it is further desirable :
to convert to the x and y axes of the final ellipse to remove the crosse
prpduct function Py Formulas for this transformation may_be found in
Hald, Ref. 8. '

c o « o o, V1= p% (Hald 19,8.10)
r vy f s

o? +o0? - o, 0, (Hald 19.8.11)
*f vy 1

These equations are identical in form with (34) and (35) of Appendix 2.

Thus the solutions may be given by analogy as

1 2
o = =lo! +o? f/// o? 4 o2 - 40,0, (1- pz)]
*f 2[ f ' ( 't '/) s
o? = l[%” + o iJ//(cz +o? )2 - 40 o, (1 - 02)]
't Ly *f tf 1t '

The relationship of the x axis of the final ellipse to the w and z axes

i8 given by

vaau o, i
f f
-~ (Hald 19,8.7) |
o? = o?
"t 'y
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